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Preface

The core technologies underlying software configuration management have changed
little in more than two decades. Development organizations struggle to manage ever
larger software systems with tools that were never designed to handle them. Their
development processes are warped by the inadequacies of their building and version
management tools. Developers must take time from writing and debugging code to
cope with the operational problems thrust upon them by their build system's inade
quate support of large-scale concurrent development.

Vesta, a novel system for large-scale software configuration management, offers
a better solution. Through a unique integration of building and version management
facilities, Vesta constructs software of any size repeatably, incrementally, and consis
tently. Since modem software development occurs worldwide, Vesta supports con
current, multi-site, distributed development. Vesta's core facilities are methodologi
cally neutral, allowing development organizations a wide range of flexibility in the
way they arrange their code repositories and structure the building of system com
ponents. In short, Vesta advances the state of the art in configuration management.

The idea behind Vesta is simple. Conceptually, every system build, no matter
how extensive, occurs from scratch. That means that Vesta has a complete descrip
tion of the source files from which the system is constructed, plus a complete and
precise procedure for putting them together. By making these files and procedures
immutable and immortal, Vesta ensures that a build can always be repeated. By ex
tensively caching the results of builds, Vesta converts a conceptual scratch build into
an incremental one, reusing previously built components when appropriate. By au
tomatically detecting the dependencies between the system's parts, Vesta guarantees
that incremental builds are consistent. What makes Vesta interesting and useful is its
ability to do all this for software systems comprising millions of lines of code while
being practical and even pleasant for developers and their management.

This book presents a comprehensive explanation of Vesta's architecture and indi
vidual components, showing how its novel and ambitious properties are achieved.
Vesta's functionality is compared with that of standard development tools, high
lighting how Vesta overcomes their specific deficiencies while matching or even ex
ceeding their performance. Detailed examples demonstrate Vesta's facilities as they
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appear to a developer, and a particular methodology of proven utility for large sys
tem development shows how Vesta works on an organization-wide scale. For the
reader who wants to see Vesta "with the covers off", the book includes a substan
tial treatment of the subtle and challenging aspects of the implementation, as well as
references to the open-source code.

Audience and Scope

The audience for this book includes anyone who has ever struggled with the prob
lems of managing a substantial evolving software code base and wondered, "Isn't
there a better way to do this?" While the book is not a "how-to" manual, it does
demonstrate specific tools and techniques, founded on Vesta's core version man
agement and building technologies, that are eminently practical. The Vesta system
embodies and encourages principled development, and so will interest software en
gineering researchers, especially those inclined toward the creation of practical tools.
Readers with a need to design and deploy configuration management solutions will
find Vesta's flexible description language and build system a powerful, original ap
proach to the persistent problem of coping with complex dependencies among soft
ware components.

The Vesta system builds on many computer science specialties, including pro
gramming language design and implementation, garbage collection, file systems,
concurrent programming, and fault-tolerance techniques. Some familiarity with these
topics is assumed.

Acknowledgements

The Vesta system was many years in the making. The core idea behind Vesta first
grabbed the attention of one of the authors of this book (RL) around 1979. The prob
lems Vesta addresses - version management and system building - are as central
to software development today as they were then, but in the past couple of decades
the standard tools in this area haven't progressed much. Why not? We believe it is for
the same reason that we still use the QWERTY keyboard: early de facto standardiza
tion on ultimately limiting technology. There are better system-building tools (and
better keyboards), but they are non-standard. Standard system-building tools have
brought software developers to a local hilltop. Vesta, we argue in this book, offers a
view from a different, higher one.

The path to that hilltop hasn't been straight. The development of a practical sys
tem embodying our core idea - the notion of an exhaustive, machine-interpretable
description of the construction of a software system from source code - proved
surprisingly difficult. The first steps occurred in the context of the Cedar experimen
tal programming environment [35, 36], A full-scale project to explore the subject
didn't get underway for several years, as part of the Taos system at the DEC Sys
tems Research Center (SRC). This project, called Vesta but later renamed Vesta-I,
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produced a usable but idiosyncratic system capable of repeatable, incremental, con
sistent builds of large-scale software. It saw significant use at SRC (but nowhere
else) in the early 1990s [11,13,25,40]. Vesta-2, the subject of this book, came along
several years later after considerable analysis of the use of Vesta-L, followed by a
complete redesign and reimplementation.

Of course, no system just "comes along". The Vesta systems owe their exis
tence to the hard work of many colleagues who generously gave their ideas, opin
ions, insights, code, encouragement, bug reports, and comradeship. With so many
participants over so many years, it is impossible to thank them all, but we want to
acknowledge a number of key contributors.

The initial inspiration for Vesta came from Butler Lampson and his work with
Eric Schmidt and Ed Satterthwaite on Cedar and its predecessor systems at Xerox
PARCo Butler guided our thinking on numerous occasions throughout the Vesta-l
and Vesta-2 projects, contributing to the designs for the system modeling languages
and repositories. He also played a major role in designing the Vesta-2 function cache
and weeder described in chapters 8 and 9.

The Vesta-l system was developed by Bob Ayers, Mark R. Brown, Sheng-Yang
Chiu, John Ellis, Chris Hanna, Roy Levin, and Paul McJones, several of whom also
assisted in the analysis of Vesta-L's use that informed the design of Vesta-2.

Jim Homing and Martin Abadi, with Butler's participation, helped design the
Vesta-2 evaluator's fine-grained dependency algorithm. Together with Chris Hanna,
Jim also contributed to the design of the system description language and the initial
implementation of the evaluator.

Bill McKeeman's incisive and insistent suggestions led us to make the descrip
tion language syntax simpler and more readable. Our fingerprint package on which
Vesta's repository and cache depend heavily descends directly from ideas and code
of Andrei Broder. Jeff Mogul and Mike Burrows helped track down a serious per
formance problem in our RPC implementation. Chandu Thekkath helped with NFS
performance problems and gave helpful comments on an early draft of this book.
Emin Gun Sirer implemented the Modula-3 bridge and made several improvements
to the performance of the entire system. Mark Lillibridge gave us many useful com
ments on an earlier draft of Appendix A. Cynthia Hibbard and Jim Homing provided
numerous suggestions for improvement on various drafts of the manuscript. Neil
Stratford coded an early version of the replication tools and some of the repository
support for them.

Tim Leonard initiated our contact with the Arana (Alpha microprocessor) devel
opment group, which became Vesta's first real user community outside SRC, and
Walker Anderson and Joford Lim led that group's initial evaluation of Vesta. Matt
Reilly and Ken Schalk championed the use of Vesta in the Arana group, seeing it
through to eventual adoption and production use. Both were involved in the port of
Vesta to Linux, and Ken has become the driving force in evolving the present open
source Vesta system. It is through his tireless efforts that developers unconnected
with the original work at DEC have an opportunity to evaluate Vesta as a practi
cal alternative to conventional configuration management tools. Scott Venier created
Vestaweb, a very useful web interface for exploring a Vesta repository.
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Finally, we owe a debt of gratitude to Bob Taylor, whose regular encouragement
kept us from abandoning Vesta when it seemed unlikely it would ever see use out
side the research lab. Without Bob's unflagging support over many years and two
companies, Vesta would probably never have happened.

This book, like the Vesta system itself, has been many years in the making. It be
gan as a Compaq technical report [27], and we thank Hewlett-Packard for permission
to use portions of that report. We also are indebted to John DeTreville for the Vesta
logo that appears on the cover. But the book would not exist without the support of
two key individuals. Fred Schneider, as series co-editor for Springer's Monographs
in Computer Science, persuaded us to undertake the production of this book when
the complexities of our day jobs made it seem impossible. Our editor at Springer,
Wayne Wheeler, showed remarkable patience in the face of repeated underestimates
of the work involved. We are grateful to Fred and Wayne and the staff at Springer
(notably Frank Ganz, Ann Kostant, and Elizabeth Loew) for their continuous support
during the preparation of the book, and we hope that the result justifies their faith.

Palo Alto, California
December 2005

Allan Heydon
Roy Levin
Tim Mann

Yuan Yu
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Part I

Introducing Vesta



The first part of this book sets the stage for an in-depth presentation of the Vesta
system. Chapter 1 presents the key problems that Vesta addresses and lays out the es
sential properties of Vesta's solution. Chapter 2 provides some technical background
on Unix, the operating system on which Vesta is implemented, chiefly targeted at the
non-specialist. Chapter 3 then surveys the architecture of the Vesta system, present
ing its major components and their interactions, and laying the foundation for a more
detailed survey of Vesta's functionality in Part II.



1

Introduction

This book describes Vesta [26,28,43], a system for software versioning and building
that scales to accommodate large projects, is easy to use, and guarantees repeatable,
incremental, and consistent builds. Vesta embodies the belief that reliable, incremen
tal, consistent building is overwhelmingly important for software construction and
that its absence from conventional development environments has significantly inter
fered with the production of large systems. Consequently, Vesta focuses on the two
central challenges of large-scale software development - versioning and building
- and offers a novel, integrated solution.

Versioning is an inevitable problem for large-scale software systems because
software evolves and changes substantially over time. Major differences often exist
between the source code in various shipped versions of a software product, as well
as between the latest shipped version and the current sources under development,
yet bugs have to be fixed in all these versions. Also, although many developers may
work on the current sources at the same time, each needs the ability to test individual
changes in isolation from changes made by others. Thus a powerful versioning sys
tem is essential so that developers can create, name, track, and control many versions
of the sources.

Building is also a major problem. Without some form of automated support, the
task of compiling or otherwise processing source files and combining them into a
finished system is time-consuming, error-prone, and likely to produce inconsistent
results. As a software system grows, this task becomes increasingly difficult to man
age, and comprehensive automation becomes essential. Every organization with a
multi-million line code base wants an automated build system that is reliable, effi
cient, easy-to-use, and general enough for their application. These organizations are
very often dissatisfied with the build systems available to them and are forced to
distort their development processes to cope with the limitations of their software
building machinery.

Versioning and building are two parts of a larger problem area that is often called
software configuration management (SCM). The broadest definition of SCM encom
passes such topics as software life-cycle management (spanning everything from re
quirements gathering to bug tracking), development process methodology, and the
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specific tools used to develop and evolve software components. Vesta takes the view
that these aspects of SCM, although important to the overall software development
process, can be sensibly addressed only after the central issues of versioning and
building. Further, in contrast to most conventional SCM systems, Vesta takes the
view that these two problems interact, and that a proper solution integrates them so
that the versioning and building facilities leverage each other's properties. That in
tegrated solution then serves as a solid base upon which to construct facilities that
address other SCM problems.

1.1 Some Scenarios

To motivate Vesta's focus on versioning, building, and their integration, here are
some scenarios that conventional software development environments do not always
handle well.

Scenario 1. A developer must check out a library to make a change necessary for his
currently assigned task, but he can't because someone else has it checked out.

The problem: the source control system doesn't allow parallel development.

Scenario 2. Dave is having difficulty debugging a change because a library used by
his code is behaving in an unexpected way. The library is a large and complex one
but was built without including information required by the debugger. Dave knows
nothing about the procedure for rebuilding the library to include the debugging in
formation he needs.

The problem: the build system does not support the parameterization necessary
for the developer to be able to say easily "rebuild this library including debugging
information" and as a result, he must delve into the library's build instructions to
determine how to set the necessary switch and build it manually.

Scenario 3. Alice is ready to begin debugging a substantial new feature, but to do
so she requires several other components to be rebuilt with a new definition for a
data structure that they share. She is unable to do this herself without setting up an
environment comparable to that used by her organization's nightly build.

The problem: the build system and process do not enable developers to build sub
stantial subportions of the complete system in order to test and debug their changes
with other affected components.

Scenario 4. Susan, a developer in California, leams that her colleague Anoop needs
to build Susan's software component at the Indian development lab. She would like
to help, but is uncertain about the ways in which her component depends on local
conditions that may be different in his development environment. She also has no
way to determine what additional files she needs to send to Anoop in order to ensure
that her component will build properly in India.

The problem: the build system does not ensure that building instructions are com
plete and capture all dependencies.
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Scenario 5. Fred types "make", and his program compiles and links without errors,
but it exhibits mysterious bugs. After a long fruitless debugging session, Fred tries
"make clean; make" to build the program from scratch. The program then works.

The problem: the build system trusts the developers to supply dependency infor
mation rather than computing that information itself, and Fred - or some developer
who had previously worked on this program - left some out.

Scenario 6. A developer comes into work and performs a "sync" operation, which
copies recently checked-in files to her workstation. This keeps her local file tree from
falling too far behind the work her colleagues are doing. However, after building her
code with the new files, she finds that it no longer works as it did yesterday. There's
no easy way for her to find the problematic change or to roll back to where she was
before the "sync".

The problem: the version management system provides only coarse-grained up
dating and supports versioning only in the central code pool, not on behalf of indi
vidual developers.

Scenario 7. A developer is implementing a new feature. In the course of the imple
mentation, he decides that the approach is flawed, so he deletes what he has been
doing and goes home. Overnight, he has an idea about how to salvage a significant
portion of his previous work, but since he didn't check the code in before deleting it
from his workstation, it's gone.

The problem: the version management system provides no support for versioning
except in the shared source pool, so it can't help the developer in this situation.

Scenario 8. John needs to make a small change to a library, so he checks it out. He
makes the change, but when he tries to compile, the compiler gets a mysterious fa
tal error. He reports the problem to his colleague Mary, who checked in the library
the previous day. Mary tries the same build on her workstation and it works. After
some head-scratching and discussion, they discover that John and Mary have differ
ent versions of the compiler. Investigating further, they find that John was supposed
to download a new compiler several weeks before, but the email telling him to do
so came when he was absorbed making a delicate change to his code, so he put the
message aside and ultimately forgot about it.

The problem: the build system and build instructions do not reflect or capture
dependencies on the versions of tools used during the build process.

Scenario 9. A customer reports an error in an old but still supported release of a
product. The developers attempt to reproduce the problem, but they are unable to re
build the old system from source. Investigation reveals that a third-party library used
in the old release was not included in the build tree and that when an updated version
of that library was installed for use in a later release of the product, it overwrote the
old one.

The problem: the version management and build facilities are not integrated and
do not require that build instructions constitute a complete description of the system,
causing an essential component to be inadvertently discarded.
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1.2 The Configuration Management Challenge

The common theme highlighted by the preceding scenarios is the failure of conven
tional software configuration management systems to address the realities of building
and evolving large systems. Effective SCM becomes more difficult as the size of the
software system grows, as the number of developers using the SCM system increases,
as the number of geographically distributed development sites grows, and as more re
leases are produced. To handle large-scale, multi-developer, multi-site, multi-release
software development, an SCM system must guarantee that builds are repeatable,
incremental, and consistent. Existing SCM systems generally fail to provide at least
one of these properties (see Chapter 10 for specifics).

Repeatability. When multiple versions are being developed in parallel, the ability
to repeat a previous build exactly is invaluable. For example, if a customer reports a
bug in an older version of a product, developers must be able to recreate the faulty
program, debug it, and develop a modified version that fixes the bug (scenario 9).

Repeatability is an easy goal to state and to appreciate, but a difficult one to attain.
Most build systems in use today do not guarantee repeatability because their build
results are dependent on some aspect of the building environment that the system
does not control. This produces the all-too-common situation in which one developer
says to another, as in scenario 8: "It works on my machine, what's different about
yours?"

Incrementality. For the practical development of large systems, the builder must
be incremental, reusing the results of previous builds wherever possible. Without
reliable incremental building, a development organization is forced to perform some
(if not all) of its builds from scratch. The slow turnaround time for such scratch
builds increases the time required for development and testing. Incremental building,
on the other hand, allows many developers to efficiently edit, build, debug, and test
different parts of the source base in parallel. (Contrast with scenario 3.) Even large
integration builds that combine work from many developers can be accelerated by
incremental building - any components that have already been built, whether in
the last integration build or in isolation by individual developers, are candidates for
reuse.

Good performance in the incremental builder itself is also important. As software
systems grow, even incremental building can be too slow if the running time of the
builder (exclusive of the compilers and other tools it invokes) depends on the total
size of the system to be built rather than the size of the changes. This problem can
easily arise. For example, a simple incremental builder might work by checking each
individual compiler invocation in the build to see whether it must be redone. If these
checks have significant cost, such a builder will scale poorly. Indeed, this is the norm
in most SCM systems.

Consistency. The build process performs a sequence of actions on source files (files
created by developers, also called sources) and derived files (files previously created
by the build system, also called deriveds). A build is consistent if every derived file
it incorporates is up to date relative to the files from which it was produced. The
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obvious way to achieve consistency is to perform every build from scratch (that is,
startingfrom sources),whichof course sacrifices incrementality. Correspondingly, a
partial systembuild introducesthe potentialfor inconsistency because some derived
filemaybe out of date with respect to a sourcefile,to anotherderivedfile,or to some
aspectof the buildenvironment on which it depends. Whenthis happens,the seman
tics of the source and derived files no longer correspond. Such a system generally
exhibitsunwantedbehaviorthat is difficult to debug,as in scenario5.

Achieving these three essential properties is thus the central challenge for an
effective SCM system.

1.3 The Vesta Response

This book shows how the Vesta system successfully addresses the SCM challenge.
Specifically, it explainsand justifies the claim at the beginningof this chapter:

Vesta is an SCM system that scales to accommodate large software, is easy to
use, and guarantees repeatable, incremental, and consistentbuilds.

Vesta subdivides the general problem of versioning into version management and
source control. Buildingbreaks downinto systemmodeling and modelevaluation.

Version Management. Version management is the process of assigning names to
evolving sequences of related source files and supporting retrieval of those files by
name. Some SCM systemsapply versionmanagement to derivedfilesas well, in the
sense that derivedfiles receiveversioned, human-sensible namesjust as sourcesdo.
By contrast, Vesta's version management assigns human-sensible names to sources
only, while derivedfiles receivemachine-oriented names and are managedautomat
ically.

Source Control. Source control is the process of controllingor regulating the pro
ductionof newversionsof sourcefiles. Operations commonlyassociatedwith source
control include check-out and check-in, which respectively reserve a new version
name (typically incorporating a number) and supply the file or files to be associ
ated with a previously reserved version name. Source control may be coupled with
concurrency control as well, so that checking out a particular versionmay limit the
abilityof other users to check out related ones. Vestaadoptsa unique perspective on
source control, quite differentfrom that of conventional SCM systems, that enables
it to avoidthe kinds of problemsevident in the scenariosof the precedingsection.

System Modeling. A system model describes how to build all or part of a software
system.It names the softwarecomponents that are combinedto producelargercom
ponents or entire systems,names the tools used to combinethem, and specifies how
the tools are applied to the components. Configuration description, systemdescrip
tion, and buildinginstructions are equivalent terms for systemmodel.

Conventional build systems typically do not require and therefore rarely have
comprehensive buildinginstructions. Instead,theydependon the environment, which
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might comprise files on the developer's workstation and/or well-known server direc
tories, to supply the unspecified pieces. This partial specification prevents repeatable
builds. The first vital step toward achieving repeatability is to store source files and
build tools immutably and immortally, as Vesta does, so that they are available when
needed. The second step is to ensure that building instructions are complete, record
ing precisely which versions of which source files went into a build, which versions
of tools (such as the compiler) were used, which command-line switches were sup
plied to those tools, and all other relevant aspects of the building environment. Vesta's
system models do precisely that.

Model Evaluation. A system model can be viewed either as a static description of
a system's configuration, or as an executable program that describes how to build
the system. Model evaluation means taking the second view: running a builder or
evaluator (the terms are used synonymously) to construct a complete system by pro
cessing and combining a collection of software components according to a system
model's instructions.

By following those instructions to the letter, the builder performs in effect a
scratch build of the system. Completeness of the instructions makes the build repeat
able, but for practicality it must also be incremental. Incrementality means skipping
some build actions and using previously computed results instead, an optimization
that risks inconsistency. To ensure that an incremental build is consistent, the Vesta
builder records every dependency of every derived file on the environment in which
it was built. This includes dependencies on source files, other derived files, the tools
used in the build, environmental details, and the building instructions themselves.
Then, if anything on which a derived file depends has changed, the builder detects
it and performs the necessary rebuilding. If not, the builder can be incremental and
skip an unnecessary rebuilding step. Recording dependencies for use in this way
is obviously impractical unless automated, and worthless unless exhaustive. Vesta's
coupling of automated dependency analysis and incremental building distinguishes
it from conventional SCM systems.

As these brief descriptions indicate, the four central topic areas are not inde
pendent. For that reason, the remainder of the book does not address them in order,
taking instead a top-down approach. Part I presents an overview of Vesta's architec
ture. Part II describes the Vesta system as a software developer sees it, emphasizing
the user-level concepts rather than the implementation. This part examines Vesta's
facilities for storing files and manipulating them in the course of the development
cycle. It also introduces the language in which system models are written and shows
how it is used to describe large systems effectively. By the end of Part II, the reader
will understand why Vesta is easy to use and how it can scale to handle large software
systems while guaranteeing repeatable, incremental, and consistent builds.

Part III examines the implementation of the functionality described in Part II.
Achieving each of the key properties - repeatability, incrementality, consistency 
requires the solution of significant technical problems. This part focuses on those
problems and their solutions, providing sufficient description of the relevant parts of
the implementation to evaluate Vesta's design and engineering choices.
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Finally, Part IV comparesVestaagainstother leadingSCMsystems,both in func
tion and performance. It showsthat development organizations need not sacrifice the
formerfor the latter; the key SCMpropertiesare achievedwith similaror even supe
rior performance as comparedto "industry-standard" builders.



2

Essential Background

The essential problems of software versioning and building transcend particular
platforms and development environments. Nevertheless, concrete solutions to those
problems are created for specific platforms and environments, and Vesta is no ex
ception. The Vesta designers sought to address the central issues in a way that was
minimally dependent on the environment, but inevitably there are dependencies of
style, terminology, and implementation detail. This book presents Vesta in sufficient
detail that these dependencies are visible, which therefore requires that the reader
understand something of that dependent context.

To this end, this chapter presents a brief overview of the environment in and for
which Vesta was originally built: Digital Equipment Corporation's Tru64® operating
system.' Tru64 is a multi-generation descendent of the Berkeley (BSD) version of
Unix. Vesta uses few notions that are peculiar to Unix, so the key Vesta concepts and
most of the technical specifics transfer easily from Unix to other popular operating
systems. Those specifics of Vesta are nevertheless shaped by the Unix context, so
this chapter outlines that context as background for the material in the remainder of
the book.

Readers who are conversant with Unix can quickly skim this chapter or skip it
entirely. Those who are unfamiliar with Unix will likely find that the essentials de
scribed below have natural analogs in the environments with which they are familiar.
This brief chapter is certainly not a reference on Unix concepts.i It occasionally sac
rifices a bit of technical precision in the interest of remaining concise and conveying
the key ideas necessary to understand Vesta, a fact that Unix and Tru64 aficionados
will undoubtedly recognize.

1 Vesta hasbeen ported to a number of other Unix platforms, including Linux.
2 The classic reference is Kernighan and Pike [33].
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2.1 The Unix File System

2.1.1 Naming Files and Directories

File names are subdivided into a name and an extension, separated by a period (" . ").
This is only a convention; Unix has no machinery for associating semantics with
file extensions, as is the case for some other operating systems (e.g., Microsoft
Windows"). File extensions are very frequently used to identify the "type", that is,
the internal format, of files. Because extensions are only conventional, they may be
of any length, although between one and four characters is typical. For some kinds of
files, the absence of an extension is the norm, but in such cases the usage of the file
is such that a single fixed name (like readme or Make f i 1e) is commonly used.

A directory is a collection of names, each of which may identify a file or an
other directory. These names do not distinguish the things they name; thus, the name
foo. bar might be a directory or a file, although conventionally a name with an
embedded dot is used for a file, not a directory.

The files and directories on a disk partition are arranged in a tree-structured
name space. (This is a simplification, to be corrected shortly.) Within this tree, a
path (sometimes called a filename path) is a sequence of names separated by the
character "I". The root of the tree is named "I", so a path from the root might be
I x I y I z. In such a path, every name, with the possible exception of the last, must be
a directory, so in the path Ix/y I z, x is a directory containing a directory named y

containing z (z may name either a file or a directory). A path like I x I y I z is called
absolute because it explicitly originates at the root. A path like x/y I z is called rel
ative, meaning that it is to be interpreted relative to some directory that depends on
the context in which the path is used.

Every directory contains the special name" . ", which refers to the directory itself.
Every directory except the root also contains the special name" . .", which refers to
the directory's parent in the naming tree.

2.1.2 Mount Points

The file name space that Unix programs and users see is created by connecting the
directory trees on individual disk partitions via a mechanism called mount points. A
directory tree Ti is attached to a particular node N in tree T2 by mounting it there,
that is, by effectively splicing T2 so that N becomes the name of the root of Ti. So,
for example, if a/bl c names a file in Tl and x/y I z is a path in T2, mounting Ti at
x/y makes the file accessible as x/y I a/bl c. Note that, as a result of the mount,
x/yI z is no longer in the name space.

The mount point mechanism enables the construction of large file name spaces
out of the smaller ones that correspond to individual disk partitions. The individual
disk partitions may be on separate computers; that is, a mount point may span file
servers connected by a local area network. File servers may implement their file
systems differently as long as they adhere to recognized protocols, of which NFS [49,
54] is a particularly common one. Vesta's storage machinery (Chapters 4 and 7)
exploits this property.



2.1 The Unix File System 15

2.1.3 Links

It is customary to think of a Unix file system as a tree of directories with files at
the leaves. Even ignoring the loops created by " ." and " . .", this is not entirely
accurate, because of links. There are two distinct kinds of links, hard and soft, with
rather different properties.

A hard link connects a Unix directory entry to a file. A file is a container for a
sequence of bytes and is identified by an integer called the inode number, which is
unique within the disk partition on which the file resides. The directory entry for a
file associates a file name with an inode number, making that association a hard link.
There may be more than one hard link to the same file, and all hard links have equal
status, in the sense that the file remains extant until the last of them is deleted. Unix
users rarely see inode numbers and many are unaware of the concept of hard links
because they never create more than one link to a file. However, in a system that
manages versions of groups of files, hard links are a useful concept.

A soft link (more commonly called a symbolic link) provides a more general
method of referencing files outside of the directory tree structure. While a hard link
pairs a file name with an inode number, a symbolic link pairs a file name with a path.
That path may name a file or, less commonly, a directory. When a name in a file path
corresponds to a symbolic link, the link is effectively interpolated (or expanded, like
a macro) at the point at which it occurs. For example, if y is a symbolic link with
value a/bl c, the path x/y I z is equivalent to the path xla/bl c I z. Unlike a hard
link, a symbolic link may "dangle"; that is, it may name a non-existent file (although
this is rarely desirable). Also, a symbolic link may point anywhere within the file
name space, while a hard link can reference a file only within the same disk partition
as the directory since inode numbers are relative to a partition.

2.1.4 Properties of Files

The set of properties, or metadata, associated with a Unix file is fairly spartan, unlike
some other file systems. We have already noted that the type of data held in the
file is not explicitly stored; instead, naming conventions (the file extension) are used
to encode this information. Sometimes file version information is encoded in the
file name as well; for example, text editors that create backup versions of the file
they edit often use a naming convention to represent these versions. There are other
naming conventions that are occasionally used to simulate file properties, such as
beginning a file name with a " . ". This indicates a "hidden" file; that is, one that the
standard directory listing program, 1 S, should by default omit. These conventions,
while undoubtedly useful in various contexts, are purely conventions. The Unix file
system doesn't understand the properties they encode.

Unix maintains with each file a trio of times called the file's mtime, a time,
and ctime. Respectively, these record when the file was last modified (written), ac
cessed (read), and had its other Unix-maintained properties change. These properties
include its permissions, which control access to the file. While access control is not
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emphasized in Vesta, it does figure in the machinery for propagating files between
sites, so the Unix access control mechanism is briefly covered here.

In a Unix system, the principals for access control purposes are users and groups.
Strictly speaking, both users and groups are identified by integers, although tables
maintained by the system administrator (stored in the file system as / etc /passwd
and / etc / group, respectively) map these integers to human-sensible names. It is
therefore customary to say, for example, that the owner of a file is smi th, while
in reality smi th is a user name that translates to, say, user ID 342. A group ID
maps, via a system table, to a set of user IDs that it is deemed to contain.' Access
control principals are local to an individual Unix system; that is, Unix has no notion
of principals whose identity spans multiple systems.

Every file has an associated owner (a single user ID), and an associated group (a
single group ID). Every file has a set of nine mode (or permission) bits, three each
for the owner, the group, and the world, and these three bits control access for read
ing, writing, and execution. For example, a commonly used system utility program
would likely grant execution permission to everyone, while a program under active
development might grant no access to the world, but all permissions to its associated
group, which would likely be the group of users involved in its development.

Given this structure, the access checking algorithm is straightforward. The acces
sor is first assigned to a class of access. If the accessor's ID equals the owner's ID, the
accessor gets owner access. Otherwise, if the accessor's ID is a member of the file's
group, the accessor gets group access. If neither of these cases applies, the accessor
gets world access. Then, for the operation being performed, the appropriate access
control bit (read, write, execute) within the class is examined, and the operation is
permitted or prohibited accordingly.

The access control scheme applies to Unix directories as well, except that, since
it is meaningless to execute a directory, the third mode bit of each class is used to
control searching of the directory instead.

For administrative purposes, Unix has a distinguished user ID, often named
"root", for which the access control check always succeeds regardless of the actual
permission bits.

2.2 Unix Processes

When a Unix program is loaded and started, it consists of a single process. For many
programs, a single process is sufficient, while others find it necessary to create addi
tional processes by forking. Processes are arranged in a tree, and the action of forking
creates a new child of the process that performs the fork operation. Processes do not
share memory" but a parent can pass parameter information when it forks a child

3 The integers that identify users and groups lie in distinct name spaces; that is, a particular
Unix system might have a user 342 and a group 342, and these have no relationship to each
other.

4 This is a simplification, since some Unix variants do permit interprocess memory sharing.



2.3 The Unix Shell 17

and can establish byte-stream communication channels, called pipes, between its
children. Also, processes can communicate indirectly through the file system.

Because processes are fairly heavyweight (that is, they have a large amount of
state information) and because the methods for communicating between them are
limited, some programs use multithreading within a process. In a multithreaded pro
cess, the threads of control share the memory and most of the other state information
associated 'with the process (e.g., parameters passed by the parent and pipes to other
processes). There is very little per-thread state, making it efficient to switch execution
contexts between threads of the same process.

A process receives parameters from its parent as a vector of text strings. The
format and meaning of these strings is program-specific, although there are a number
of standard conventions. Typically, parameters include input and/or output file names
and options that alter the program's behavior. Collectively, the vector is sometimes
called the command line, because when a program is launched from the shell (see
below), the command line typed by the user is parsed to create this vector.

Every process has a view of the file system name space that is defined by two
directories, called the current or working directory and the root. The working direc
tory is the context used to interpret relative paths used by code within the process.
For example, xl faa. c is interpreted by looking in the working directory for a di
rectory named x, then looking in it for a file named faa. c. The root directory is
used as the starting point for absolute file names, that is, paths beginning with "I".
Both of these directories are established by the process's parent at the time the pro
cess is forked. This is an important subtlety, for most Unix users think of "I" as
having a fixed meaning for all processes. While this is frequently the case in Unix
installations, it is not inherent, and Vesta exploits the ability to control the meaning
of the root directory for selected processes, as discussed in Section 5.2.3.

An executing process communicates with its surrounding environment through
input/output channels called file descriptors. A file descriptor is simply a small in
teger that identifies an open file, a pipe, or a device such as a user's keyboard or
display screen. Three file descriptors have particular conventional uses and are gen
erally passed to a process by its parent: s tdin is an input stream frequently used
to supply the input data to a program, s tdou t is an output stream frequently used
to deliver the results of a program, and s tderr is an output stream used to report
errors. While these streams often satisfy the I/O needs of a simple program, a more
complicated one that needs to read and write multiple files may not use them at all
and instead perform its I/O through file descriptors that it explicitly opens.

2.3 TheUnixShell

The shell is a program with which a Unix user interacts after logging in. Its job is
to accept commands from the user and execute them. There are a number of popular
Unix shells that differ in their details, but all provide a way for the user to type in
the names of programs to be executed and to supply parameters to them. The shell
also provides ways to direct where the streams s tdin, s tdout, and s tderr go.
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With this key feature the user can create pipelines that connect the inputs and outputs
of multiple programs to manipulate a stream of data in complex ways. Much of the
power of Unix derives from this mechanism, coupled with a rich set of programs,
called filters, that are designed to be combined in pipelines. By providing some sim
ple control flow machinery for conditional execution and looping, the shell enables
the construction of shell scripts, which are, in essence, simple applications formed
by aggregating and sequencing the execution of individual Unix programs.

In the simplest case, however, the shell simply parses the typed command line
and forks a process to run the specified program. For example, when the user types

/bin/cc -02 -g foo.c

the shell interprets it to mean "fork the program /bin/ cc as a process and provide
as its parameter vector the three strings -02, -g, and foo. c". The other state in
formation required by the process, such as the root and working directories and the
three standard file descriptors, is set by default (and of course the shell gives its user
ways to alter the defaults).

The shell also provides a way to define environment variables which are passed
implicitly to programs invoked from the shell. An environment variable is simply a
name and associated text string. Its meaning is established by code executing as part
of the process. As the name suggests, these variables generally encode some infor
mation about the environment of the process. Environment variables are generally
passed unchanged to a child process by its parent.

A common use for environment variables is to define a search path, a sequence
of directories whose members are sequentially interrogated when a certain kind of
file is being sought. The shell itself defines such a variable, called PATH, that is the
sequence of places to look to locate a program to be executed. For example, if the
PATH variable is defined as

PATH=/usr/local/bin:/usr/bin:/bin

and if the user typed

cc -02 -g foo.c

the shell would sequentially search the three paths /usr / local/bin, /usr /bin,
and / bin to find the first directory in which the program c c exists, then execute it.
If that directory happened to be /bin, then this command line would have the iden
tical effect as the one two paragraphs above. (/bin is the directory conventionally
used for standard program binaries and is therefore generally a component of this
search path.)

2.4 The Unix Programming Environment

The conventions of the Unix programming environment were developed initially
based on the semantics and needs of the C programming language [34], and most
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other programming languages that have since been added to the environment have
followed those conventions as much as possible.

C programs are typically created from source files stored in a number of related
directories, plus one or more binary libraries. The source files are identified by names
ending in . c, libraries are identified by the file extension . a. Each source file is
compiled by the C compiler, producing object code in a file with extension . o. An
executable C program is then linked together by the program Ld, which reads a set
of object files and libraries and writes a single executable file, which conventionally
lacks a file extension.

The source files that make up a program generally need to share definitions, in
cluding the names of functions defined in other source files or libraries. These def
initions are typically grouped in header files, conventionally with extension . h. To
incorporate the definitions in a header file, a C source program uses the #inc1ude
statement. For example:

#include <stdio.h>

This statement instructs the C compiler to locate the file s tdio. h and insert its
contents as though they appeared at this point in the source program. Although the
programming language imposes no structural requirements on a header file, it is a
common methodology to use a header file to define the interface to the functions
provided by a library. So in this example, s tdio . h might define the interface for
the standard I/O library s tdi 0 . a, which would be included on the command line
that links the program.

A library is a collection of object files (also called an archive) processed by a
program named ar so that they may be selectively included during the linking of
a program by Ld, A program that includes s tdio. h may use only a few of the
functions it defines, and therefore only the code that implements those functions
rather than the entire contents of s tdio. a need be linked in.

As a program grows in size, it becomes unwieldy to use explicit paths to name all
the files involved in its construction. Instead, the C programming environment tools
(chiefly the compiler, cc, and the linker, Ld), use search paths to locate header files
and libraries, respectively. Moreover, the standard system libraries and the header
files needed to use them are stored in well-known directories, which, by default,
appear at the end of these search paths. The specifics vary in different versions of
Unix, but the idea is the same. For example, the compiler might use a search path
named INCLUDEPATH to find header files, whose default value might be:

INCLUDEPATH=.:/usr/include

This search path instructs the compiler to look for header files first in the current
working directory (' . '), then in /usr / .inc Lude.P

5 As any experienced Unix developer knows, search paths are fragile. Vesta's system de
scription language (Section 5.2.2) provides a more robust way to bind names to specific
file paths.
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2.5 Make

While it is possible to compile and link Unix programs directly by typing shell com
mands or running shell scripts, this is too cumbersome for anything but the simplest
applications. As a result, virtually every Unix programming environment includes
Make [18] or one of its many variants. Make is a program that automates the build
process. It takes as input a Makefile that encodes a set of dependencies among files
and a set of actions to be taken to build a piece of software from those files. The
underlying idea is simple: Make repeatedly considers, by examining the dependency
rules, whether any file is out-of-date with respect to those it depends on, and if so, it
executes a designated action that brings the file up-to-date. A typical rule states that
an object code file, faa. 0, depends on its associated source file, faa. c. If Make
discovers that faa. a is older than faa. c (or missing entirely), it executes an action
associated with the dependency rule, which typically compiles faa. c to produce an
up-to-date faa. o. These actions are essentially short shell scripts. Thus, a Makefile
provides a simple way to group together a collection of related actions for building
the components of a program and specifying declaratively the circumstances under
which those actions are to be taken. Moreover, if the dependencies are completely
specified, Make can rebuild a software system incrementally following a change to
one or more files.

From this very brief description, we can highlight three significant properties of
Make:

• dependencies are specified manually by the programmer;
• only dependencies involving files can be expressed; and
• build decisions depend entirely on relative file modification times.

All of these have been recognized as shortcomings in various contexts, and many of
the variants of Make exist precisely to try to correct these deficiencies. Later chapters
examine Make in much more detail, contrasting it with Vesta's approach to building
software systems.
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The Architecture of Vesta

Chapter 1 briefly introduced the central SCM problems of building and versioning.
This chapter and those in Part II describe how Vesta is designed to solve these prob
lems and show how the Vesta system creates a development environment in which
software builds are repeatable, consistent, incremental, and scalable.

3.1 System Components

We begin with an architectural overview of Vesta and the major functional behaviors
of its components. Figure 3.1 shows these components, with those that are most
visible to the ordinary developer toward the left and those that are mostly hidden
within the implementation or visible only to administrators toward the right. The
components in the bottom row are shared servers; at each Vesta installation, or site,
there is exactly one instance of each. In contrast, the components in the top row can
execute on any developer's machine, and most of them typically run on every such
machine.

The repository server handles long-term data storage. It provides an abstraction
similar to, but with significant differences from, the Unix file system abstraction.
Vesta users manipulate files and directories in the repository using two sets of tools
shown at the upper left of the figure: standard file browsing and editing tools and
repository tools. Developers use the former set of tools for browsing, listing directo
ries, editing, comparing files, and so on. These are precisely the tools of a standard
Unix environment (that is, Is, emacs, etc.), and they work with files in the repository
as they would with an ordinary file system. Developers use the repository tools to
manipulate files and directories in ways that are unique to Vesta and do not fit the
standard file system paradigm, to be discussed in more detail in Chapter 4.

The evaluator is Vesta's builder; it evaluates (that is, it executes) system mod
els written in Vesta's system description language to construct complete software
systems from their constituent parts. The evaluator makes use of one or more run
tool servers to execute standard build tools like compilers and linkers. It invokes the
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Fig. 3.1. The major components of the Vesta 'implementation.

function cache server to store intermediate and final results of each build for later
reuse.

The weeder is a utility invoked by a Vesta administrator, not a developer. It serves
as a garbage collector for Vesta's long-term storage, removing unwanted files and
other persistent data structures.

These components of the Vesta system interact in different ways to implement
source file management, system building, and storage management, as discussed in
the following sections.

3.1.1 Source Management Components

Figure 3.2 highlights Vesta's source management components - those that imple
ment source control and version management - and shows how they interact. Chap
ters 4 and 7 describe these components in detail.

Source management occurs in two classes of directories implemented by the
Vesta repository: immutable and mutable. Developers use immutable source directo
ries to hold versioned, immutable source files (or sources, for short).' Of course,

1 When we speak of source files, we mean any file stored in the Vesta repository that is not
created through the execution of the Vesta evaluator (builder). From Vesta's perspective,
such files are "handmade", since Vesta has no rules (system models) for constructing them.
Obviously, files whose contents are typed by a Vesta user are sources. But, by this defi-
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Fig. 3.2. Source management components and their interactions .

these immutable files must be created somehow; mutable directories provide the
place for this to happen.

The Vesta repository stores immutable sources in a hierarchical name space,
similar to a Unix or Windows directory tree. Every version of every source is in
cluded in the tree. Different versions of the same source are distinguished by having
a version name or number as a component of their pathnames. The repository makes
this tree available as a network-accessible file system, using the standard NFS pro
tocol [49,54]. Thus, ordinary file browsing and editing tools running on any user
workstation capable of being an NFS client can access all versions of all immutable
sources directly. The repository also makes mutable directories available in the same
way. These two file systems are typically mounted (see Section 2.1.2) and appear in
the developer's file name space as / v e s ta and / v e s ta-work, respectively.

In the repository, sources are conventionally grouped in packages. A package is
a collection of related files, such as the sources to build a single program or library.
By convention, Vesta sources are versioned at the package level, not at the level
of individual files. This means that a version of a package consists of a directory
tree of related files, and all the versions of a package are subdirectories of a single
package directory. Contrast this with the more conventional method of versioning

nition, binary files such as build tools and libraries copied into the Vesta repository from
elsewhere are also sources.
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every source file (e.g., RCS [60]), which provides no natural means of identifying
which versions go together.

Like many source control systems, Vesta uses a check-out/check-in paradigm,
but the process works in a slightly unusual way. Because source files are immutable,
a check-in operation never deletes existing files or renders them inaccessible. Instead,
check-out/check-in operations add to the name space of package versions.i Check
ing out a package reserves a version name and makes a working copy, in a mutable
directory, of the existing files and subdirectories from the package's previous version
(if any). Standard tools can then be used to modify, create, delete, or rename files and
directories in the working copy. The builder operates only on immutable snapshots
of the working copy, not on the working copy itself. These snapshots, which are im
mutable source directories, are taken by the repository tools at the user's direction as
part of the build process. Checking in the package binds the previously reserved ver
sion name to the last snapshot of the working copy. Check-in, snapshotting, check
out, and other repository operations that do not fit the NFS file access paradigm are
handled by the repository tools. As Figure 3.2 shows, the tools work by invoking
special Vesta repository primitives through a remote procedure call (RPC) interface.

To support development of software across geographically distributed sites, the
repository server at one site can replicate some or all of its sources to repository
servers at other sites, communicating through an RPC interface (not shown in the
figure). Vesta's support for this partial replication is described in Section 4.3.

3.1.2 Build Components

Figure 3.3 highlights the Vesta components that participate in a build. Building is
quite a complex process, involving many components that interact in subtle ways to
ensure that builds are repeatable, incremental, and consistent.

The Vesta evaluator is the center of the build process. The evaluator reads a sys
tem model and acts on it, building what the model describes. It begins (arrow 1 in
the figure) by reading the model from an immutable directory in the repository. A
model describes how to build a software system from source, and the sources it ref
erences are also stored in immutable directories. Models are written in the Vesta sys
tem description language (SDL), a small functional programming language whose
data types and primitives are specialized for software construction. In this language,
a typical primitive function call causes a single source file to be compiled, while a
more complex function might compile and build an entire library. Chapters 5 and 6
discuss Vesta's SDL and system models in some detail.

Whenever the evaluator encounters a function call in a model, it consults the
function cache (arrow 2 in Figure 3.3) to determine if a sufficiently similar call has
already been evaluated and remembered from a previous build. If so, the evaluator
reads the result from the cache instead of evaluating the function again. This is the

2 These additions to the name space actually use appendable directories, a variant of the
repository's immutable directories not shown in Figure 3.2. As the name suggests, an ap
pendable directory has limited mutability; names can be added but not deleted.
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basis for incremental system-building: using cached results to avoid redundant re
construction. A function cache "hit" can occur at any level in the call graph of a
Vesta model, from the leaves (usually individual calls to a standard build tool such as
a compiler or linker) up to the root (the entire build). Most other build systems lack
this ability; that is, they implement the equivalent of function caching only at the

leaves. As a result, they don't scale well to large builds. Chapter 8 explains in detail
how the evaluator and the function cache work together to implement incremental
building, and Chapter 11 documents the performance benefits.

What does it mean for a previous function call to be "sufficiently similar" to the
current one? That is, what is the set of conditions under which the evaluator will get
a cache hit? The complete answer is quite complicated and will occupy our attention
for much of Chapter 8, but we can catch a glimpse of it here. In order for use of a
cached function result to be sound, Vesta must ensure that all the names and values
on which that result depended are the same in the current evaluation environment as
they were when the cache entry was created including, for example, the names and
contents of all the header files used in a C compilation. Hence, when Vesta evaluates
a function, it records the dependencies that the function 's result has on names and
values in its execution environment. These dependencies are dynamic, meaning that
the evaluator records only what is referenced during this particular evaluation, rather
than estimating the dependencies by static analysis of the system models and other
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source files involved.' The dependencies recorded are also fine-grained, meaning
that when a part of a composite value is referenced, the evaluator records a depen
dency on just that part, not on the whole value. (For now, think of a composite value
as a directory, so that a fine-grained dependency identifies the members of the di
rectory on which a function evaluation depends.) On cache lookups, a hit occurs
whenever the evaluator can find a cache entry for the current function whose depen
dencies were bound to the same values in the entry's original environment and the
current environment.

When the evaluator encounters a function call and cannot find a suitable cache
entry, it must evaluate the call. For a function written in the Vesta language, the
evaluator does this itself. For a primitive function call that invokes a tool, it must
execute the tool. It does so via the runtool server (arrow 3 in Figure 3.3), which is
responsible for running the tool and reporting its outcome back to the evaluator. The
evaluator invokes the runtool server using a remote procedure call, and the runtool
server can therefore reside on a remote machine. This arrangement enables Vesta to
support parallel compilation by invoking runtool servers on multiple machines and
to support cross-platform development by invoking the runtool server on a machine
with a different architecture from the local machine when a cross-compiler is not
available.

Build tools execute in an encapsulated environment. That is, Vesta controls not
only the tool's command line and environment variables, but also the entire file sys
tem content that the tool sees. While a tool is executing, Vesta monitors and records
each file system reference that it makes, since these represent dependencies that must
be recorded in the eventual cache entry for the tool invocation. Figure 3.3 shows the
interactions among components that accomplish the recording. When a tool begins
execution, it has a unique file name space separate from any other tool execution and
which the repository server and evaluator collaborate to provide. File accesses made
by the tool actually go to special temporary build directories (arrow 4) provided by
the repository. (These directories are invisible to users and their special properties are
transparent to the tool.) The repository notes the first reference to each file or direc
tory made by the tool and calls back to the evaluator (arrow 5 in Figure 3.3). Using
the unique name space for this tool execution, the evaluator resolves the binding for
the name and records that binding as a dependency of the current tool invocation.
The evaluator returns the result of the binding to the repository, which then adds it
to a tree of temporary build directories for this tool invocation. The repository can
then satisfy subsequent accesses to the same name from these directories. At the con
clusion of a tool execution, the repository reports to the evaluator the new files and
directories that the tool created (and any other file system changes the tool made) as
its output.

After the evaluator finishes executing a function call, it writes a new cache entry
(arrow 6 in Figure 3.3) to record the function result and its dependencies. The func
tion cache server maintains these cache entries persistently for an entire site so that

3 For example, in building a C program, if a particular .h file in the environment is not used,
no dependency on it is recorded.
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each new build can benefit from work done previously, and a build requested by one
user can benefit from work previously done on behalf of another user.

As a final step, not shown in Figure 3.3, the evaluator can ship the results of
the build. That is, it can copy some or all of the results of the evaluation's top-level
function call to ordinary files and directories , making them available outside the
Vesta cache.

3.1.3 Storage Components

Figure 3.4 shows the three pools oflong-term disk storage used by Vestacomponents
and illustrates the operation of the weeder, an administrative tool for reclaiming disk
storage space that is no longer needed.

As shown at the bottom of the figure, the repository has a private storage area
for directory entries and the function cache has a private area for cache entries, but
they share a common pool of storage for source and derived files. This file pool
is managed using garbage collection; that is, when neither a source directory nor
a function cache entry references a file, it can be deleted. At different times in its
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history, the same file can be referenced by a directory, a cache entry, or both. The
operation of the file pool is discussed in detail in Section 7.1.1.

As builds are performed, cache entries and derived files accumulate in the func
tion cache and the file pool, which can eventually grow to consume the available
disk space. However, because the function cache is just a cache, its entries can be
freely deleted without affecting the repeatability or consistency of builds Gust future
performance, due to fewer cache hits). When disk space gets low some cache entries
must be deleted to reclaim space in both the entry storage and the file pool. How
ever, deciding which entries to remove and which to retain is a task that cannot be
entirely automated; Vesta users and administrators must together decide which ones
are worth keeping, based on their knowledge of what builds are likely to be requested
in the future.

Unwanted cache entries and derived files are deleted by the Vesta weeder, which
an administrator runs periodically. Given a specification of which build results to
keep, the Vesta weeder deletes all cache entries that did not participate in those
builds (arrows 1 and 2 in Figure 3.4). (In the terminology of the garbage collec
tion literature, the input specification to the weeder is the set of roots.) The weeder
then contacts the repository (arrows 3 and 4 in Figure 3.4) and deletes all files in the
shared pool that are no longer referenced either by remaining cache entries or by the
repository directory structure.

Since weeding can take considerable time (minutes to hours), the function cache,
repository, and weeder are designed so that the weeder can be run concurrently with
users' activities without adversely affecting normal build performance. Thus, the
weeder is essentially invisible to Vesta users. Chapter 9 shows how concurrency and
invisibility are achieved.

3.1.4 Models and Modularity

There is one other component of Vesta that is implicit in the preceding figures: sys
tem models. Chapters 5 and 6 cover the writing and use of system models in con
siderable detail, but in the present context what matters is that they are modular,
meaning that each model can import other models and use the functions they define.
Thus a model that describes how to assemble a collection of sources into a subsys
tem can be used by higher-level models that assemble subsystems into a complete
system.

Modularity is essential in managing the description of large systems, but it is
important for building small programs too. In a modem programming environment,
even a small "hello world" program is compiled and linked against a large runtime
library of input/output and operating system interface routines. Moreover, the com
mands needed to invoke compilers, linkers, RPC stub generators, and the like can
be complex. Vesta provides a standard environment model that encapsulates these li
braries and common building actions and makes them available to user-written mod
els in a simple form. The standard environment can be quite complicated internally
without exposing any of these complexities to the ordinary user. For example, it can
build some or all of the standard libraries and tools from source. At the same time,
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because it is written as a model rather than being hard-wired into Vesta's implemen
tation, more advanced users can modify or extend the standard environment to suit
their unique needs, or even replace it entirely.

Modularity is important even when writing system models for individual appli
cations. One might not immediately think to organize an application's system model
so that it can be imported, but by doing so, one can then write a release model that
imports one version of the standard environment and builds a whole collection of ap
plications using it. Thus a development organization that maintains a suite of appli
cations can easily create a consistent release in which all the applications are known
to have been built with the same tools against the same libraries.

3.2 Vesta's Core Properties

The Vesta components and architecture outlined in the preceding section deliver four
essential properties needed for effective software version management and construc
tion: repeatability, consistency, incrementality, and scalability.

Repeatability. A Vesta build description represented by a collection of system mod
els gives a complete recipe for building a software system from versioned sources.
That is, a build description brings every relevant aspect of the construction environ
ment under Vesta's control, including environment variables, library archives, build
tools, and immutable sources. Because the build description contains complete infor
mation and because system models and the source files they reference are immutable
and immortal, executing the build description produces a repeatable result.

Consistency. A build system that aspires to perform consistent builds must know
the dependencies of every derived file. Vesta detects and records all such dependen
cies automatically in the course of building by encapsulation of tools and by fine
grained dependency analysis. By using automatic detection rather than relying on
human-supplied (and thus error-prone) dependency specifications, Vesta can collect
all the information needed to determine what building actions are necessary, and can
thereby ensure that the results of its builds are consistent.

Incrementality. Incremental construction means exploiting past work to perform
as little new work as possible. To this end, Vesta caches the results of individual
tool invocations as well as larger units of work, such as the construction of entire
libraries. Moreover, it automatically associates with each cached result complete,
fine-grained dependency information that specifies precisely when that result may
be safely reused. Since the results reside in a shared, site-wide cache, each developer
can benefit from the builds of all others, maximizing the opportunity for incremental
construction.

Scalability. In a sense, scalability is the central challenge that Vesta faces, since
for small systems repeatable, consistent builds are easily carried out by brute force
and incrementality is unimportant. Thus, scalability considerations pervade the Vesta
architecture and implementation.
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Two examples of design for scalability have already surfaced in the overview
above. First, the repository's directory structure allows for a flexible hierarchy of
packages, and the system description language allows build instructions to be written
in a modular fashion and to import other build instructions in a hierarchical structure.
Hierarchy provides one of the few ways known to "divide and conquer" the com
plexity of large-scale software configurations, enabling manageable scaling. Second,
Vesta does not limit cooperative development to a single site. As a software system
grows larger, its development becomes more likely to involve programming teams
at multiple, geographically distributed sites. Groups at different sites may need to
share only some of their sources. Vesta's ability to partially replicate a repository's
contents supports scaling of development operations beyond a single site.

Scalability is fundamentally different from repeatability or consistency, which
are essentially binary: either a system exhibits them or it doesn't. Scalability is really
a design parameter. At the time work began on the version of Vesta described here
(Vesta-2), an earlier prototype (Vesta-I) was being actively used to build and evolve a
code base of 1.4 million source lines. A natural objective for Vesta-2 was to accom
modate a system at least an order of magnitude larger," Coincidentally, anecdotal
data suggested that, at the time, the largest software systems in industrial settings
that were built as a single consistent unit comprised 10-20 million lines of source
code. From these two observations came a design target of 20 million source lines
for a system that Vesta-2 should be able to build, and the implications of that target
shaped the specifics of the system described in the remainder of this book.

In Summary

This chapter surveyed Vesta's architecture and sketched how its components work
together to provide repeatable, incremental, consistent, and scalable system construc
tion. With this background, Part II presents a detailed view of Vesta's functionality
as it appears to a developer, and Part III provides an "under the hood" look at the
implementation techniques that deliver that functionality.

4 It is a truism that a quantitative change of an order of magnitude in a fundamental assump
tion for a system induces a qualitative difference in that system's design and/or implemen
tation.
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The next three chapters survey Vesta facilities that an individual developer sees.
Chapter 4 describes the development cycle, Vesta's unconventional mechanisms for
naming, organizing, and manipulating files, and Vesta's support for geographically
distributed development. Chapter 5 presents the primary features of the system de
scription language that is used to define how software systems are built. Chapter 6
shows the language in action by examining how a typical system is described with
Vesta system models and how that description affords both the developer and the
development organization great flexibility without sacrificing repeatable, consistent,
incremental builds.



4

Managing Sources and Versions

The Vesta repository provides long-term storage of source and derived files. The
repository has two kinds of clients - users and the evaluator - who require distinct
sets of services. Users are mainly concerned with sources. They read existing source
files and create new ones. The evaluator is concerned with both sources and deriveds.
It reads system models, and it invokes tools that both read sources and deriveds and
write out new deriveds. This chapter examines the repository services as they appear
to software developers who use Vesta. The evaluator-specific facilities are covered
later in Section 7.1.

A Vesta user interacts with the repository chiefly through a set of repository tools,
which provide a particular interface to the functions implemented in the repository
server (recall Figure 3.2). The repository tools present to the user a particular style
of source naming, storage organization, and development process using the general
purpose storage facilities of the server. These specifics are the subject of Sections 4.1
and 4.2.

It is worth noting that while the approach taken in these tools is of proven utility,
it is by no means "hard-wired" into Vesta. On the contrary, the tools are quite mal
leable. They are short programs invoked from the Unix command line, each fewer
than 1,000 lines of code and readily changed. Most of the complexity is located in
the repository server. Thus, a development organization can, with a small investment
of programming, adapt the repository tools to support their preferred naming con
ventions and development process. The reader can therefore think of these tools as a
fully worked-out example of a development process, one that has proven to be both
convenient and practical.

This chapter first examines the central notions of file naming and organization,
then shows how a user actually steps through the development cycle using the reposi
tory tools. It next describes how teams at multiple sites coordinate their development
activities using repository replication, and closes by discussing the metadata facili
ties the repository provides.
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4.1 Names and Versions

4.1.1 The Source Name Space

The Vesta repository provides a hierarchically structured source name space, similar
to a Unix or Windows directory tree, but with a few additional features and restric
tions to support configuration management. Users see the source name space as a
subtree of the file name space visible on their workstations. As a result, users can use
all their existing, familiar tools for browsing ordinary files and directories equally
well on repository files and directories.'

To support Vesta's guarantee of repeatable builds, source files have two key prop
erties not generally found in ordinary file systems: immutability and immortality. Im
mutability means that once a file is created and placed in the source name space, the
file's contents cannot be modified. Immortality means that a file, once created, can
not be deleted. Together these properties support repeatable builds by ensuring that
source files remain available and unchanged indefinitely.

Of course, it would be impractical to enforce these properties without exception
for every source file. Deletion is sometimes unavoidable (for example, to address a
lack of disk space or to comply with a licensing agreement) and mutability mustbe
possible in order to populate directories. To address these realities without sacrificing
the goal of repeatable builds, the Vesta repository carefully limits how file mutation
and/or deletion occur. It ensures that all source files accessible by the evaluator are
immutable, which is necessary in order for caching to work. The repository allows
source files to be deleted, but it does not allow a deleted source's full pathname to
be reused later for a different source. Thus, repeating a build will either access the
identical files that were accessed previously or will fail because some source file has
been explicitly deleted.

The Vesta repository supports two kinds of directory with limited mutability:
immutable and appendable. Immutable directories provide larger immutable units
than single files. Once an immutable directory is populated with files and placed in
the source name space, it cannot be changed. Every file and subdirectory in such a
directory must be immutable too, allowing the entire tree rooted at it to be treated
as an immutable unit. Appendable directories support and enforce Vesta's rule that
names cannot be reused. New names can be created in the directory, but existing
names cannot be unbound or freely rebound to different files.

However, the repository does allow certain carefully limited forms of rebinding,
involving special entities called ghosts and stubs (to be explained shortly). If the
Vesta evaluator encounters a ghost or stub during a build, it halts with an error mes
sage, does not produce a result, and does not record the error in the Vesta function
cache. Therefore these cases of rebinding cannot cause the same build to produce

1 The repository server achieves this seamless integration by exporting the source tree as an
NFS volume that is then imported and mounted (see Section 2.1.2) by client machines.
However, the server also exports two remote procedure call (RPC) interfaces for access to
features that do not map well onto NFS (see Figure 3.2 and Section 7.2.6).
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different results on different occasions. As with deletion, they can at worst cause a
build that succeeded on one occasion to fail on another.

Ghosts support Vesta's deletion semantics. When a user deletes a file, stub, or
subdirectory from an appendable directory, Vesta replaces the deleted item with a
ghost. The ghost prevents the old name from being reused; Vesta does not allow a
name bound to a ghost to be rebound to anything else, and attempting to delete a
ghost has no effect.

Stubs support more specialized features of Vesta: name reservation (Section 4.2)
and partial replication (Section 4.3). A stub is a placeholder for a file or directory
that may be supplied in the future. In some situations, a stub replaces an existing file
or directory. If this happens, the stub can itself be replaced only by the original file
or directory, or by a ghost.

Obviously, ghosts and stubs are unconventional file system notions. They appear
distinctively in the file system name space created by the Vesta repository as zero
length files that cannot be read or written.

The entities that can appear in source directories - files, directories, ghosts, and
stubs - are collectively called objects.

4.1.2 Versioning

Software systems that are under active development constantly grow and change
through modification of the files they contain. How can an append-only name space
of immutable files and directories support software development? The answer, of
course, is to adopt a naming convention in which each pathname includes a version
number. Instead of modifying a file or directory in place, one creates a new version.

Most file systems and software development tools that support versioning place
the version number at the end of a pathname, associating it with the individual file.
By contrast, the repository server imposes no requirement regarding the location of
the version number within a pathname, and the repository tools implement versioning
at the level of directory trees, not individual files. Since this placement is unusual, it
merits closer examination.

Most programs consist of several files that make up a logical unit, which Vesta
calls a package. A package always includes one file of building instructions (a sys
tem model) and typically consists of several closely related files of code, interfaces,
and documentation, perhaps organized in a tree of subdirectories. Large programs
are generally decomposed into several packages, each relatively independent of the
others. It is natural to store each package as a separate directory or directory tree.

When a package is modified, often several files in it must change together for con
sistency. In most version control systems (of which CVS, discussed in Section 10.1.2,
is representative), every file is versioned separately, and hence a separate data struc
ture and tools are required to keep track of which versions of the files in a package
go together to make a coherent version of the whole package. In Vesta, each coherent
package version simply corresponds to one immutable directory with one hierarchi
cal file name, with the version number as a component of the name. For example, the
directories thread/5 and thread/ 1 0 would be versions 5 and 10 of the thread
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package, and the files thread/5 / faa. c and thread/ 5 / faa. h would be cor
responding versions of its components faa. c and faa. h. If faa. c is unchanged
between two versions of a package, the repository transparently links the same im
mutable file into both version directories; only one copy exists on disk.2

The repository makes all package versions directly available for browsing and
building at all times. A user can easily see what is in a particular version simply
by looking in its directory, and can easily compare two versions with standard tools
like Unix's diff. This is in contrast to version control systems like CVS that imple
ment file versioning without integrating it into the general file naming hierarchy, thus
making versioned files invisible unless a user views them through a special tool or
performs a special operation in order to copy the file into the regular file name space.

A secondary reason for versioning at the level of directories is that standard Unix
and Windows tools do not understand version numbers appended to file names. Vesta
effectively "hides" the numbers from the tools by placing them earlier than the last
component in the pathname. For example, a Unix C compiler more naturally deals
with file names of the form 2 / faa. ethan faa. c / 2 or faa. c ; 2. The repository
server can support all three of these versioning schemes, since it allows immutable
files to be placed directly in appendable directories, but the standard repository tools
supplied with Vesta support only the first form of versioning, as a design choice.

While package-level versioning naturally groups related file versions, it does not
help in the assembly of a large software system from multiple packages. Some mech
anism is still required to identify which versions of the packages go together to make
a coherent system. Vesta provides that mechanism in the system description lan
guage, not the repository. One might argue that if a mechanism for naming package
versions is included in the description language, then one might just as well use that
mechanism to name individual file versions and dispense with package-level ver
sioning in the repository. Although this approach is technically feasible, it would
be far less convenient for users than Vesta's chosen one, for models would then be
cluttered with large numbers of versioned file names instead of containing only a
few versioned package names.' In addition, a package version represents a devel
opment "step" taken by an individual developer, while the combination of multiple
packages typically involves multiple developers. (More on this later in this chapter.)
The dynamics of these activities are different and are best addressed with different
mechanisms.

4.1.3 Naming Files and Packages

A hierarchical name space gives great freedom in assigning names to files. To avoid
chaos, one needs to organize the name space, that is, one must establish conventions
on how files are named so that people can find them. Vesta's repository server does
not enforce any particular naming convention" but the repository tools do. Figure 4.1
shows part of a typical repository directory structure.

2 This link is analogous to a Unix hard link; see Section 2.1.3.
3 Indeed, an early precursor of Vesta adopted this file versioning approach, with the result

that its system models were nearly unreadable.
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/vesta/vestasys.org

text

e = Immutable
E9 = Appendable

EB = Stub

II = Ghost

doc

thread.h

thread.c

Fig. 4.1. Naming convention example.

The root of the subtree in the figure is /ves ta/ves tasys . org. This name is
chosen to be unique across all Vesta sites, for reasons discussed in Section 4.3.

Below the root is a tree of appendable directories used for categorizing packages.
In this example, packages that are generally useful are placed in the conunon direc
tory, packages that are part of the C++ compilation system are in cxx, and private
packages owned by users Smith and Jones are inprivate/ smi th andprivate/
j ones. This portion of the directory tree is purely conventional and arbitrary, and
the repository tools place no restrictions on it.

At the next level down in the tree are individual packages such as text, table,
and thread. The thread package is shown in detail in the figure. The immutable
subdirectories thread/2 and thread/ 3 are versions of the package. thread/3
is shown containing three immutable files and an immutable subdirectory. Version
thread/l has been deleted, leaving a ghost in its place to keep the name from
being reused. The name thread/ 4 is bound to a stub, reserving it for a new version
that a user is working on and has not yet checked in.

The appendable directory thread/2 . fas t is a branch of the thread package.
While versions 1, 2, 3, ... represent the main line of development, the versions under
2 . f as t are another line of development branching off from version 2. Essentially,
thread /2 . f as t is a new package, whose version 0 is identical to version 2 of the
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thread package. Branches can give rise to further branches; for example, a branch
from thread/2 . fas t/ 1 might be named thread/2 . fas t/ 1. bugfix.

4.2 The Development Cycle

The sequence of steps that users typically go through when evolving software is
the development cycle. The outline below shows the cycle and identifies the Vesta
command used in each step. The command vesta is the Vesta evaluator, and the
other commands shown are repository tools.

1. Check out a package: vcheckout
2. Modify the package

a) Edit: any text editor
b) Advance:vadvance
c) Build: vesta
d) Test
e) Go back to step 2a until done.

3. Check in the results: vcheckin.
4. Optionally go back to step 1.

4.2.1 The Outer Loop

In the outer loop of the development cycle, a user checks out a package (step 1),
modifies it (step 2), and checks in the result as the next version (step 3). One trip
around this cycle constitutes a session. The check-out step creates a mutable working
copy of the package. Modification of this working copy occurs during the inner loop
of development, discussed below. After modifications are completed, the check-in
step writes an immutable snapshot of the working copy into the repository."

The repository tools implement a simple concurrency control scheme as part of
check-out. Checking out a package reserves a name (which of course includes a
version number) for the version that is to be checked in later. No other user can
reserve the same name, and normally only the user who reserved a name is given
permission to check the package back in under that name. By default, vcheckout tries
to reserve a version number that is one greater than the highest checked-in version.
Thus, if two users use vcheckout in the default way on the same package name, one
will get an error.

For example, in Figure 4.1, a user (say, Jones) has checked out the thread pack
age with the command vcheckout common/thread, thereby reserving the name
/ves ta/ves tasys . org / common/ thread/ 4 for the next version. The reser
vation appears in the repository name space as a stub, owned and writable only by
Jones. If user Smith asks to check out the thread package too, he will be told that

4 Both check-out and check-in use copy-on-write to improve time and space efficiency, as
described in Section 7.2.4.
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version 4 is already reserved by Jones. Thus alerted, Smith can speak to Jones and
make sure their intended changes will not be redundant or conflicting. He can also
plan for the eventual merging of source code that is likely to be necessary.

If Smith wants to proceed in parallel with Jones, he can ask vcheckout to re
serve a different version number, in one of several ways. If Smith is making a sin
gle variant version, he can choose a name outside the main sequence of versions,
say thread/3 - srni tho If Smith is starting a new line of development that may
proceed for several versions before merging back into the main line, or may never
merge back in, he can create a branch using the vbranch tool. In our example, Smith
could type vbranch commonlthread/3.smith, which would create a new branch
with the specified name. Version cornmon/ thread/ 3 . srni th/ 0 would be iden
tical to cornmon/thread/3. Smith could then check out the branch and work on
it as in a normal package. Finally, in the unusual case in which Smith's changes are
meant to subsume Jones's completely, Smith can leapfrog Jones by explicitly asking
vcheckout to reserve version thread/ 5.5

In none of these cases does Smith need to "break a lock," as would be necessary
in the concurrency control schemes implemented by some other version management
systems (see ReS [60], for example, discussed in Section 10.1.1). Vesta does not lock
the old version from which Jones started; instead, Vesta reserves the new version
name by creating a stub for it. There is nothing to interfere with Smith starting a
different line of development that branches off from a common old version.

Once Jones has successfully checked out the package, she goes through the inner
loop of the development cycle (discussed next). When Jones has finished modifying
the package, she invokes the vcheckin tool, which replaces the reservation stub that
was created by vcheckout with an immutable snapshot of Jones's mutable working
copy. It also deletes that working copy, so that Jones cannot inadvertently continue
to edit it after her sessionhas ended.

4.2.2 The Inner Loop

The inner loop of the development cycle is the familiar edit-build-test sequence, with
the addition of one step that is unique to Vesta: the advance operation. Editing occurs
in the mutable working directory created by vcheckout. However, the Vesta evalu
ator will not read files in this directory because it guarantees build repeatability by
building only from immutable sources. So, after editing and before building, a Vesta
developer invokes the vadvance command, which makes an immutable snapshot
(copy) of the developer's mutable working directory and writes it into the repository
name space under a new version number within the session. It is this set of files that
the vesta command supplies to the evaluator for building."

5 It's worth emphasizing that these uses of the name space are conventions implemented
entirely by the repository tools. Their semantics are not understood by the repository server.

6 The reader may find it surprising that vadvanceis used on every iteration of the inner loop
of the development cycle. To be sure, this simplifies the evaluator implementation, but these
intermediate snapshots have value in their own right. Recall scenario 7 in Section 1.1.
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To keep the many snapshots created during a session from cluttering the shared
name space, the repository tools put them in a directory that is separate from the
main-line versions of the package, called the sessiondirectory. A session directory is
essentially a branch with a special name, created by vcheckout. The versions created
in a session directory are generally of interest only until the package is checked in.

4.2.3 Detailed Operation of the Repository Tools

The preceding overview of the outer and inner loops of the development cycle pro
vides the background for a detailed look at the way the Vesta repository tools manage
the name space at specific points in the cycle. Figure 4.2 illustrates the complete oper
ation of vcheckout. Initially, thread/3 is the latest version of the thread package.
When user Jones types vcheckout common/thread, the system creates the reser
vation stub thread/4 and the session directory thread/ checkout / 4 in the
repository's appendable source tree /ves tao It creates the mutable working copy
jones / thread in a separate mutable directory tree named /ves ta-work. The
session is given an initial version thread/ checkout / 4/0 whose contents are
immutable and identical to the last checked-in version in the main line of develop
ment, thread/ checkou t / 3. The working copy initially has the same contents as
well, but it is fully mutable.

/vesta/vestasys.org /vesta-work

copy

jones

e = Immutable

E9 =Appendable

m= Stub

¢ = Mutable

Fig. 4.2. Action of the command vcheckout common/thread.
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Ivesta/vestasys.org

e = Immutable

E9 =Appendable

Ell = Stub

¢ = Mutable

Ivesta-work

jones

snapshot

Fig. 4.3. Action of vadvance in the directory /ves ta-work/ jones / thread.

Jones can now edit the files in her working copy with any text editor or other
file manipulation tool. She can freely create new files or subdirectories and delete or
rename existing ones, using ordinary commands and tools,"

Whenever Jones wants to try compiling her modified files, she types vadvance
to save an immutable snapshot as the next higher version in the current session di
rectory. Figure 4.3 illustrates the operation of vadvance. The tool simply makes an
immutable copy of the working directory in the package's session directory. The
name of this copy is the next available version number in the session. Jones can of
course use vadvance even when she is not about to do a build. For example, she
could use it to checkpoint her current work in preparation for making experimental
changes.

Jones uses the vesta command to invoke the Vesta evaluator to build the latest
version in the session. (For convenience, Vesta provides a simple shell script that
combines vadvance and vesta in a single command.)

Next, if her program has built without errors, Jones tests it. If changes are needed,
she returns to the editing step and goes around the inner loop again. Any time Jones
needs to reexamine an old version or undo a change, she can simply look back at the
old snapshot - whether it is in the current session, an old session, the main line of

7 For example, the Unix commands cp, mv, rm, mkdir, and rmdir work without modifica
tion on files and directories in Vesta working directories.
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/vesta/vestasys.org /vesta-work

thre

delete

jones

e = Immutable
ED = Appendable

o = Mutable

Fig. 4.4. Action of vcheckinin the directory /ves ta-work/ jones / thread.

checked-in versions, or elsewhere - and compare or copy the files to her working
directory.

Finally, when Jones is satisfied, she ends the outer loop of the development cycle
by running vcheckin, as mentioned earlier. Figure 4.4 illustrates this operation. Note
that check-in does not itself snapshot Jones's working copy of the package; instead it
uses the snapshot made by the most recent advance after verifying that the working
copy has not been modified since then.

4.2.4 Version Control Alternatives

The preceding sections emphasized that the specifics of version management and
concurrency control are implemented by the repository tools, not by the repository
server. Other version control styles can be readily implemented in the repository
tools without changing the server. For example, only small changes to the repository
tools would be required to support concurrent versioning in the style of CVS [23].
In concurrent versioning, there is no locking or reservation of version numbers at
all. New version numbers are chosen at check-in time rather than check-out time. To
support this, vcheckout would be changed to omit stub creation. vcheckin would be
altered to use the version number recorded by vcheckout to test whether any newer
version has been checked in since the one the session started from. If so, vcheckin
would prompt the user to merge changes. With this version control regime, it would
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also be appropriate to alter the naming convention for session directories slightly,
because the present convention makes the session name a function of the reserved
new version name.

Vesta does not provide any special tools for merging changes made along dif
ferent branches, largely because the repository semantics make it easy to merge
branches using commonly available tools. Vesta keeps track of the versions created
along all the branches, all the way back to the common base versions from which
they diverged, and manifests each one as an ordinary file system directory. Thus, a
developer can easily use standard directory-oriented tools, such as difT, difD, and
patch, perhaps augmented with some simple shell scripts for convenience. In con
trast, RCS and CVS require special variants of these tools that are integrated with
their versioning systems. Of course, a development organization may choose a par
ticular set of conventions for naming versions in the Vesta repository and might find
it useful to build a version comparison/merging tool that understands those conven
tions. Because the repository makes the version structure manifest within the ordi
nary file system name space, such a tool is easy to write and requires no knowledge
of or access to Vesta repository internals.

4.2.5 Additional Repository Tools

A few other repository tools round out the development cycle suite.
The vcreate tool creates a new package containing no versions. A user can then

check out the new package and add files to it. When a package has no versions,
applying vcheckout to it creates an empty directory as the working copy.

The vsessions tool provides a simple graphical interface for managing checked
out packages. The tool displays the latest version number in each session belonging
to its user. It provides an Advance button for each session, which simply invokes
vadvance on it.

The vlatest tool displays the latest checked-in version number of a given package
or of all the packages and branches in a given directory tree.

The vwhohas tool lists the user (if any) who has checked out either a given
package or all the packages and branches in a given directory tree.

The vhistory tool shows a change log for a package, listing all past versions and
the comments supplied by users at check-in time.

The vupdate tool creates a new version of a system model in which the ver
sion numbers of imported models have been revised according to the state of their
packages in the repository and instructions from the user who invokes the tool. For
example, a user can specify to vupdate that the new model should reference the
latest checked-in version of all imported models, a fairly common operation.

The vimports tool lists the transitive closure of a model's imports.

4.2.6 Mutable Files and Directories

Section 4.2.2 showed how mutable files and directories are used in the inner loop of
the development cycle. In principle, these could be ordinary files and directories pro
vided by the host file system, but Vesta realizes significant performance advantages
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by implementing them in the repository server. The semantics of the repository's
mutable files and directories closely resemble those of the host file system. That is,
objects in a mutable directory can be created, deleted (without leaving ghosts), or re
named as desired, and mutable files can be modified freely. As seen by the user, the
repository's mutable directories are essentially identical to ordinary file system di
rectories.f but the repository implements special additional operations for use by the
repository tools to optimize the development cycle. These operations efficiently copy
data between mutable and immutable directories, making vcheckout, vadvance, and
vcheckin nearly instantaneous regardless of the number of files in the package. These
special operations are accessed through a repository server RPC interface, since they
do not fit within the NFS protocol used for standard file system manipulation.

4.3 Replication

The preceding section described the development cycle, focusing on a user's manip
ulation of files in a repository. Increasingly, large software systems are developed in
parallel at geographically distributed sites. The Vesta repository was therefore de
signed to make it easy to replicate sources at many sites. To enable developers to
work independently, the replication design allows each repository to operate mostly
autonomously. Only a few operations depend on the ability to access more than one
repository at the same time.

4.3.1 Global Name Space

Conceptually, Vesta sources are named in a single name space that is global across all
Vesta repositories. The name space is organized as a tree, illustrated in Figure 4.1. Its
root is /vesta. Each repository stores a subtree of the global name space, typically
making it available as /ves ta in a standard Unix file name space via a mount point
(see Section 2.1.2).

Replication exists when two or more repositories store subtrees that overlap,
meaning that the same path from the root exists in more than one repository. Two
repositories that hold the same subtree are said to be replicas for it. When this occurs,
Vesta ensures that the replicas agree, that is, the repository's replication machinery
maintains an agreement invariant on the portions of the global name space replicated
at the various repositories. This invariant is discussed in detail in Section 7.3.2, but
intuitively it means that no name is bound to different values in different repositories.

8 An esoteric note for Unix experts. Vesta does not implement symbolic links in mutable
directories, and does not allow multiple hard links to a mutable file. Symbolic links are
forbidden because it would not be meaningful to copy a symbolic link into the immutable
part of the repository; it is unclear what a symbolic link there should mean if the Vesta eval
uator were to encounter one. Multiple hard links are forbidden to simplify the bookkeeping
and to guarantee that a mutable file never has to be copied when making an immutable
snapshot. In practice, these limitations are inconsequential.
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Vesta uses partial replication; that is, each repository can replicate all, part, or
none of the data stored in any other repository. Partial replication extends the funda
mental Vesta property of build repeatability to hold not just within a single repository,
but globally across all Vesta repositories that agree. The agreement invariant does not
ensure that a particular build can be carried out at any repository. Since replication
is partial, a build that succeeds at one repository may fail at another because some
of the necessary sources are missing. However, the agreement invariant does ensure
that if all sources required for a build are present at two repositories, then the build
will produce identical results at both.

Vesta uses a global naming convention to make it easy for new sites to adopt
Vesta without inadvertently creating source names that clash with those at other sites.
As a result, two sites that initially know nothing of each other and share no sources
can later decide to cooperate and take replicas of each other's files. Under this nam
ing convention, when a new Vesta site wants to create sources that are initially not
shared with any other site, the site administrator puts them under a new directory im
mediately below Ivesta, named with an Internet domain name that the site owns.
Because domain names are unique, the new sources acquire globally unique names
without the need for any special coordination across repositories."

Sources that are to be distributed widely should be named carefully, so that the
names make sense to the people who will be using them. For example, the Vesta
system's own sources are publicly available under a directory named Ives tal
vestasys. org, an intuitive name not associated with a particular machine. The
use of domain names in the global name space supports unique name creation with
out cross-repository coordination, but those names imply nothing about the locations
at which files are stored. There is no guarantee that files with a particular domain in
their pathname reside on a machine in that domain, or even that any such machine
exists. Naming and file location are separate notions.

Domain names provide a simple way to add names to the root directory Ives ta
without conflicts, but sites also need a way to add names to directories deeper in the
tree without causing disagreements between replicas. Vesta uses a simple concept of
mastership to achieve this. For each appendable directory, other than Ives ta itself,
one repository's replica is designated the master. The master is the only replica that
is required to hold a complete set of the names in the directory, so new names can be
added to the master freely with no need for communication with other repositories.
In contrast, a non-master appendable directory can add names only by copying them
from another replica.

Mastership also applies to stubs. The stubs described in Section 4.1.1, which
serve as a placeholders for data that has yet to be created, are actually master stubs.
A non-master stub, on the other hand, is a placeholder for data that may already
exist in another repository. Non-master stubs are used chiefly in master appendable
directories, where they allow the directory to hold a complete set of names with
out requiring all the named objects to be present in the same repository. Mastership

9 This mechanism is not perfect, because Internet domain names can be deregistered and
later reregistered to some other owner, but has been adequate for practical use.
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has some additional significant properties and subtleties - in particular, it can be
transferred from one replica to another - which are discussed in Section 7.3.

4.3.2 A Replication Example

Figure 4.5 shows an example of two repositories that partially replicate each other
and are in agreement. They are the Eastern and Western repository of the imaginary
Vesta Systems Organization. The figure illustrates several common patterns that oc
cur in real Vesta usage.

Western
repository

west.vestasys.org

Eastern
repository

east.vestasys.org

1

vestasys.org

cache

• = Immutable
E9 = Master Appendable

o = Nonmaster Appendable

EB = Master Stub

o = Nonmaster Stub

Fig. 4.5. Two repositories that agree.

cache

As noted above, the root directory Ivesta is not mastered at either repository,
and the names directly under it look like Internet domain names. In the western
repository, Ives ta contains a subdirectory named ves tasys . org, which holds
the master copy of the organization's files. The eastern repository has a similar but
non-master vestasys. org subdirectory, as well as one named example. com.

Partial replication occurs at several levels of the tree. At the top level, part of
ves tasys . org I common is replicated in the eastern repository. The western copy
has a complete list of names - thread, text, table, and cache - while the
eastern copy is lacking table. The western copy does not have the contents of
the cache directory, but does have a stub with that name as a placeholder. This
ensures that no other repository will create a different cache directory that would
clash with the copy in the eastern repository and violate the agreement invariant.
The eastern repository also contains a partial replica of Ives tal example. com,
a subdirectory that does not appear in the western repository at all.
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One level down, in the thread package, the western copy is master and has all
three versions that currently exist, while the eastern copy currently lacks version 3.
The text package demonstrates that a directory need not have the same master as
its parent; it is mastered at the eastern repository and its parent is not. Perhaps when
first created it was mastered at the western repository and later moved to the eastern
repository, since version 1 is present in the west but not in the east. Since the eastern
copy is master, it must have a complete list of names, so it has a stub for version 1,
perhaps inserted at the time it received mastership. In addition, the eastern copy has
a master stub for version 3. This master stub is a placeholder for an object whose
content has not yet been supplied (typically a reservation created by vcheckout as
described in Section 4.2). The master repository is free to replace it later with a
different type of object, but thereafter it cannot be changed back to a master stub.

4.3.3 The Replicator

Vesta provides a replication facility, the replicator, that copies data between repos
itories while preserving the agreement invariant. The facility is available both as a
standalone tool vrepl and as a library that can be called by other tools.

The replicator can "push" sources from the local repository to a remote one,
"pull" sources from a remote repository to the local one, or copy sources between two
different remote repositories. It takes as input the network addresses of two reposi
tories - a source and a destination - and a set of pathname patterns specifying the
data to be replicated. The replicator walks the directory tree of the source repository
to find all paths that match the patterns and copies to the destination repository those
that are not already present there. Continuing the example in Figure 4.5, assume that
a developer using the western repository issues the command

vrepl -d east.vestasys.org
-e+ /vesta/vestasys.org/common/table/LAST

The command replicates (pushes) the highest-numbered version of the table pack
age from the western to the eastern repository. (The -d indicates the destination of
the transfer. The source is omitted and defaults to the local repository.) More compli
cated patterns are possible and common. The full pattern language extends the one
provided by the Unix shell. For example, it adds the pattern LAST, which matches
the highest version number that is not a stub. Prefixing a pattern with + adds the
objects that match it to the set to be copied; prefixing it with - removes them.

The replicator also has a feature that replicates all the files needed to do a par
ticular Vesta build. Chapter 6 explains the organization of system models in detail,
but for the moment it is sufficient to know that every package contains a system
model that specifies how the package is to be built and that system models import
other system models to create a complete description of the components needed for
a particular build. By convention, the root model for the build of a package is named
. main. ves. Referring again to Figure 4.5, assume that a developer using the west
ern repository issues the command
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vrepl -s east.vestasys.org
-e@ /vesta/example.com/gui/4/.main.ves

The command replicates (pulls) into the western repository from the eastern reposi
tory all the source code needed to build version 4 of the gui package, including the
entire programming environment (libraries, compilers, etc.) required by the build.
Note the pattern specifying the gui package is prefixed by the @character. This
directs the replicator to start from the specified system model, to form the transi
tive closure of the imported models (using the same algorithm as the vimports tool
mentioned in Section 4.2.5), and for each model, to emit a + pattern. The resulting
set of patterns is then passed to the basic replication algorithm. Because this feature
conveniently replicates everything needed to build a particular package version, it is
used far more often than individual + and - patterns are.

For some organizations with multiple repositories, a natural time to invoke the
replicator occurs when new package versions are checked in. Rather than build this
into the repository server, Vesta provides for optional replication in the vcheckin
tool, as described in the next section. Organizations will likely want to replicate
packages at other times as well, and it is a simple matter to set up scheduled execu
tions of vrepl for this purpose. Of course, the replicator may also be run manually as
needed.

4.3.4 Cross-Repository Check-out

When two sites running separate repositories are closely cooperating, users at one
site may want to check out packages whose master copies are in the other site's
repository. This section outlines how the development cycle tools described in Sec
tion 4.2 support development across sites.

Nearly all the work required to support cross-repository operation occurs in
vcheckout, as shown in Figure 4.6. The source repository, where the package be
ing checked out is mastered, is shown at the top; the destination repository, in which
the user doing the check-out wants to work, is shown at the bottom. Notice that the
actions in the destination repository are similar to the single-repository case in Fig
ure 4.2. The steps in cross-repository check-out, whose numbers are circled in the
figure, are:

1. Examine the master replica in the source repository to find the highest version
number. In Figure 4.6, this is version 3 of the thread package.

2. If this version does not exist in the destination, call the replicator to copy it in.
3. Create the reservation stub (for version 4) and the empty session directory in the

source repository, just as in the single repository case.
4. Call the replicator to copy them to the destination repository.
5. Transfer mastership on them from the source to the destination.
6. Insert version 0 in the session directory and create the working directory at the

destination.
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Fig. 4.6. Cross-repository check-out.
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Once the package is checked out, vadvance operates in exactly the same way as
it would after a local check-out, since it needs to access only the working and session
directories, both of which are in the destination repository.

Similarly, vcheckin can do its job strictly within the destination repository, since
vcheckout moved mastership of the reservation stub there. However, it is likely that
the source repository will need to have a copy of the new version soon, so for conve
nience vcheckin completes the check-in locally, then calls the replicator to copy the
package back to the source repository. Mastership does not change.

The Vesta tools for creating new packages (vcreate), branching the version se
quence (vbranch), finding the latest version (vlatest), and finding who has packages
checked out (vwhohas) also require minor modifications in order to work properly
across repositories. The changes required are similar to those applied to vcheckout
but considerably simpler. to

4.4 Repository Metadata

Like most file systems, the Vesta repository stores more than just files and directo
ries. A certain amount of information about the files and directories, or metadata,
proves useful for a number of purposes. This section describes the repository's gen
eral mechanism for managing metadata as well as some specific applications of that
mechanism, notably for access control.

4.4.1 Mutable Attributes

A source control system typically needs to store auxiliary information about sources
beyond just their names and contents. For example, the Vesta repository tools need
to know whether each appendable directory is a check-out session, a package, or
something else, and they need to know the connections between stubs, sessions, and
working directories. Users often want to know when and by whom a package was
created, checked out, or checked in, and on what previous versions a new version
was based.

The Vesta repository provides mutable attributes to serve these purposes and
others. Conceptually, a source object's attributes are a total function F from string
names to sets of string values. If a name n has never been bound to any value, F(n)
is the empty set. There are operations to set the value of F (n) to a singleton set or
to clear it to the empty set, and operations to add or remove an element from F(n).
Setting F (n) to a singleton is equivalent to clearing it and then adding the value,

10 One problem remains with the cross-repository tools. In the single-repository case, each
tool uses a simple transaction mechanism provided by the repository server to make its
complete action atomic. However, since this mechanism is local to a repository, it does not
achieve atomicity across multiple repositories, so the tools become non-atomic in this case.
With vcheckout, steps 3 and 6 (on page 50) are individually atomic, but if there is a failure
between them, the check-out is left in an incomplete state. The recovery from this state is
not presently automated, but it is a straightforward manual action.
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atomically. There are also several operations to query values of F. This functionality
is available through an RPC interface, and the repository tool vattrib provides a
general purpose command-line interface to it.

By design, attributes are not visible to the Vesta evaluator or the tools it invokes.
Repeatable builds require that the inputs to an evaluation be immutable; hence, at
tributes, which are mutable, are never queried by the evaluator. Equivalently, chang
ing an attribute cannot change the result of an evaluation.

Each source object has attributes unless its parent directory is immutable. Thus in
Figure 4.1, the immutable version commorr/ thread/ 3 has attributes, but its files
and subdirectories thread. c, ... , doc do not. While this limitation is imposed to
simplify the implementation, it does not pose a problem in practice, because each
package version (that is, each versioned directory) is a conceptual unit of develop
ment rather than a collection of files with individual properties.

The repository development cycle tools make extensive use of mutable attributes.
For example, the vcheckout tool adds attributes on the stub, the session, and the
working directory it creates so that anyone can locate the other two. The vadvance
and vcheckin tools use these attributes and record some of their own. In addition,
vcheckout and vcheckin record the previous version, the user requesting the oper
ation, the time, and other information. Figure 4.7 shows some sample attributes ap
plied by the tools, most of which are self-explanatory. Note the message attribute
on yes tal repos / 30; it is a change log entry solicited from the user by vcheckin.

A few attributes have meanings interpreted by the repository itself. For example,
if a stub is created with an attribute named syrnlink-to, the repository manifests
it through the NFS interface as a symbolic link (see Section 2.1.3) whose value is
the value of the attribute. I I The development cycle tools (vadvance and vcheckin)
use this feature to maintain, within each appendable directory that contains versions,
a symbolic link named latest referencing the newest version. The example di
rectory tree in Figure 4.1 (page 39) would include several such links (not shown in
the figure). Specifically, there would be a link named /ves ta/ves tasys . org /
corrunon/thread/latest that refers to its sibling named 3, and one named
/vesta/vestasys. org/corrunon/thread/2. fast/latest that refers to
its sibling named 2.

One can imagine extensions of the repository tool set that would use mutable
attributes in other ways. For example, a release-s ta tUB attribute might be used
to mark a particular version as internally released, externally released, or withdrawn
from release due to bugs. It would then be natural to extend the vupdate tool, which
mechanically updates the import clauses in a Vesta system model to newer ver
sions, to alter its behavior based on the setting of the r e 1e as e - s tatus attribute.

Attributes are also used to store access control information for files and directo
ries in the Vesta repository, which is the subject of the next section.

11 The syml ink- to feature cannot compromise the repeatability of builds. The evaluator
always sees stubs only as stubs, and as noted earlier, any build that encounters a stub simply
fails without producing a result. The build tools invoked by the evaluator do not see stubs
at all.
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% vattrib /vesta/vestasys.org/vesta/repos
#owner

mann@west.vestasys.org
type

package
creation-time

Thu Aug 22 17:41:35 PDT 1996
created-by

heydon@west.vestasys.org

% vattrib /vesta/vestasys.org/vesta/repos/30
session-dir

/vesta/vestasys.org/vesta/repos/checkout/30
old-version

/vesta/vestasys.org/vesta/repos/29
message

Added code to gather usage statistics.
content

/vesta/vestasys.org/vesta/repos/checkout/30/12
checkin-time

Tue Nov 4 14:10:22 PST 1997
checkin-by

mann@west.vestasys.org
#owner

mann@west.vestasys.org

% vattrib /vesta-work/mann/repos
session-ver-arc

o
session-dir

/vesta/vestasys.org/vesta/repos/checkout/31
old-version

/vesta/vestasys.org/vesta/repos/30
new-version

/vesta/vestasys.org/vesta/repos/31
checkout-time

Wed Dec 3 09:55:12 PST 1997
checkout-by

mann@west.vestasys.org

Fig.4.7. Sample attributes on somedirectories.
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4.4.2 Access Control

The Vesta repository's access control model is based on that of Unix (see Sec
tion 2.1.4), but the Unix access control model does not work across multiple ad
ministrative domains, because the naming of principals (that is, users and groups)
is strictly local. Since Vesta supports replication and other forms of remote access
between repositories that are under separate administration, some extensions to the
basic Unix access control scheme are necessary. These extensions make it possible
for repositories that are cooperating closely to replicate all their access control infor
mation, while still allowing those with less mutual trust to interoperate sensibly.

The Vesta repository uses text strings to name principals and access control lists
(ACLs) to grant permission. Principal names are global, of the form user@realm
or "group@realm. The realm is a name for an administrative domain chosen by
its administrator, while the user and group names are the local names for users and
groups within the realm. By convention, a realm is an Internet domain name; thus a
user's principal name may be the same as his email address, although Vesta does not
rely on this property.

Each repository object has an owner ACL listing one or more user principals,
a group ACL listing one or more group principals, and a set of nine mode flags
that indicate whether the owners, groups, and others are granted read, write, and/or
directory search access.V Unlike the Unix model, the owner and group are sets of
global names rather than single local names, chiefly so that an object can be given
different owners in different realms if desired. This generality cannot be represented
through the NFS interface, so when asked through this path for a file's owner or
group, the repository provides one from the local realm, if possible. The repository
also maps between global principal names and the numeric user/group ids in which
NFS and Unix traffic by examining the local user and group registries and building
up a translation table.

Access control lists and mode flags are stored in mutable attributes named
#owner, #group, and #mode. 13 Because not all repository objects have attributes,
and to save space, the repository uses a form of inheritance: if an object does not have
a particular access control attribute, it implicitly inherits the value from its parent di
rectory. Hence, changing the access control on a directory can effectively change the
access control on other directories and files below it in the tree, a departure from
conventional Unix semantics.

12 As in the basic Unix scheme, user and group names cannot be mixed on the same ACL or
anywhere else within the system; thus the leading caret in group names is present only for
clarity, not to avoid ambiguity.

13 The names of all access control attributes begin with an identifying character ("#") to mark
them as requiring stronger privileges to change than other attributes. Ordinary attributes of
an object can be changed by any user who has write permission on the object, but most
access control attributes can be changed only by the object's owner, and some require even
stronger privileges. The identifying character also makes it easy to separately control the
replication of these attributes across repositories.
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In order for the repository server to perform an access control check, the iden
tity of the principal requesting the access must be authenticated. For this purpose
the repository implements several authentication methods. A configuration file sup
plied by the repository's administrator specifies which user names it should accept,
from which hosts, using which authentication methods, and whether to grant normal
or read-only access. The trusted unix authentication method is provided to support
local NFS access to the repository. A request submitted using this method includes
a numeric Unix user id as a principal identifier. The repository deems such a re
quest authentic if it comes from a trusted host (listed in the table), and translates
the numeric id to a user name in the local realm. A request submitted using the
trusted global authentication method includes a global user name, which the repos
itory deems authentic if it comes from a host that is trusted for the name's realm.
These authentication methods clearly offer rather weak security. More secure au
thentication methods based on Kerberos or other cryptographic protocols have been
designed but, at this writing, not yet implemented.

The repository does not treat groups as first-class principals that are individually
authenticated; a request coming into the repository does not list or authenticate the
group identities that are to be checked against group ACLs. Instead, once the re
quest's user identity has been authenticated, the repository determines for itself the
groups to which that user belongs and checks for the presence of those groups on
group ACLs. For this purpose, the repository uses a combination of local operating
system information and additional data supplied by the repository administrator. For
principals whose names are in the local realm, the repository maps user names to
their corresponding numeric IDs and checks for local group membership. For prin
cipals from other realms, the repository uses data provided by the administrator. 14

As with any access control system, special privileges must be granted selectively
for administrative purposes. The repository recognizes three different administrative
principals. The system administrator (Unix user root) has blanket permission to
perform any operation, except operations that could cause a violation of the replica
agreement invariant (Section 7.3.2). There is also a non-root Vesta administrator
(typically Unix user vadmin) that can perform nearly all the repository operations
that root can, but is unable to gain privileged access to other system resources or
impersonate other users. Finally, there is a special wizard user (typically Unix user
vwi zard) that is permitted to do all repository operations, even those that could
potentially violate the agreement invariant. This back door exists primarily for emer
gency repairs. It is not needed in normal operation except to create names directly
under /vesta.

14 The repository doesn't provide any machinery for replicating such data; this would be a
useful addition. However, the repository does permit a user or group name to be designated
an alias for another, which is useful when the same person has a login in two different
realms or when two cooperating realms each have a group that is working on the same
project. In such circumstances, replicated data can be accessed by "cross-aliasing" principal
names in the two realms, eliminating the need to synchronize access control lists across
cooperating realms.
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4.4.3 Metadata and Replication

The repository's metadata and its replication machinery interact in two ways. First,
because of the importance of metadata in the operation of the repository tools, it
must be propagated appropriately by the replicator. Second, since the actions of the
replicator cross administrative domains, special attention must be given to control
ling those actions, which is accomplished with access control lists represented as
repository metadata.

The first of these topics, the propagation of mutable attributes, is conceptually
straightforward. Section 4.3.3 outlined the replicator's basic algorithm, which exam
ines a specified collection of names in a source repository and copies each one into a
destination repository if it isn't already there. In addition, the replicator updates the
mutable attributes of every name it considers by merging updates from the source
repository into the destination. (See Section 7.3.4 for details of the updating mecha
nism.) Strictly speaking, this updating is not necessary since mutable attributes play
no part in the agreement invariant. Nevertheless, preserving them as part of replica
tion is necessary to enable the cross-repository features of the repository tools, as
described in Section 4.3.4.

The other interaction between metadata and replication involves the security of
the replication primitives themselves, for which a few special access control lists
exist. Why are these lists needed? Suppose repository X attempts to transfer master
ship of some directory D to repository Y. However, repository X is misbehaving and
does not actually have mastership of D; the true master for D is repository Z. If Y
implicitly trusts X, it will accept mastership of D improperly, causing it to come into
disagreement with Z. For similar reasons, a transfer of mastership from Y to rogue
repository X must be avoided. In general, a repository must not accept data from a
rogue repository that might maliciously supply incorrect values.

Conceptually, every object in a repository has ACLs that control replication. As
with other ACLs, if an object does not have its own replication access control lists,
it inherits them from its parent directory. The #mas tership- to access control
list for an object lists the repositories that mastership on the object can be ceded to,
#mas tership- from lists the repositories that mastership can be accepted from,
and #replicate-from lists the repositories that replicas can be taken from. In
addition, if an object has a #replicate-from-noac access control list, it will
accept replicas of the object's data from the repositories listed, but it will not accept
replicas of their access control attributes (that is, those attributes whose names start
with #). No special ACL is needed to control giving replicas; read access by the
requesting user is sufficient for that. Administrative access is required to change
these replication-related ACLs.

Vesta allows any user to replicate data into his local repository as long as: (1) the
user has read permission for the data in the remote repository, (2) the user has search
permission on the directories involved in the local repository, and (3) the remote
repository is on the proper access control list. Because replicating data does not
change it, there would be no sense in requiring the user to have write permission
in the local repository.
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In Summary

This chapter has covered the major facilities of the repository as they appear to a de
veloper using the Vesta system. These facilities support the development cycle, both
for an individual developer (the inner loop) and for the developer's local organiza
tion (the outer loop). The repository and repository tools also support an expanded
development cycle across geographically separated groups via replication. In the next
chapter, the focus shifts from the storage facilities supporting the development cycle
to the system description language used to describe how files are put together to form
systems, preparatory to an examination of the actual building process in Chapter 6.
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System Description Language

There are two inputs to the construction of a software system: the sources and the
instructions for producing the system from those sources. For small code bases, sim
ple instructions generally suffice. However, for even moderately large systems, the
build instructions become complex and subtle, and the simple, script-like facilities
of conventional build "languages" such as Make therefore become inadequate. For
this reason, Vesta's system description language (SDL) supports complete, hierar
chical build instructions, which enable all the details of a build to be specified in a
modular form consistent with the overall system structure. Moreover, SDL supports
functional abstraction, which makes it possible to encapsulate low-level building. As
a result, complex details can be hidden from the view of end users, simplifying the
system descriptions they write.

This chapter describes the essential features of the Vesta system description lan
guage in preparation for examining in Chapter 6 how those features are used in prac
tice. Appendix A presents the language's complete syntax and semantics.

5.1 Motivation

In Vesta, the instructions for building a system are contained in system models. Sys
tem models are programs written in SDL. They describe how to build a software
system from sources, that is, from scratch. As the system models are being evalu
ated, tools such as compilers and linkers are invoked to build the program, and their
outputs are combined according to the instructions provided by the system models
to form the result of the build.

A few essential requirements dictate the structure and functionality of SDL:

• The builder (that is, the SDL evaluator) must be able to construct systems repeat
ably, incrementally, and consistently.

• The complexity of a software description should, in some sense, be proportional
to the conceptual complexity of building the system it describes.
The language must be practical for developers to use. It must be adaptable to a
variety of software development methodologies and organizational processes.
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Consideration of these requirements quickly leads to some desirable properties
of the description language and building system. They should be designed so that
repeatable and consistent builds can't be compromised by errors in system models.
Moreover, the language should support incremental building as the norm, so that
good performance is the rule, not the exception. Also, the core language facilities
should be as basic and "methodology-neutral" as possible, and support for particular
styles of system construction or organization should be programmed in the language,
not built into the language or the builder.

These requirements and consequent properties establish the major characteristics
of the Vesta language and build system:

Repeatability and consistency give rise to two properties: all information required
to build a system from sources is captured in system models and all sources are
immutable.

• Incrementality leads to the choice of a functional language, because each func
tion invocation then represents a unit of work that can be conveniently cached.

• Correctness implies that the incremental builder must determine automatically
which components of a system need to be rebuilt, not impose on users the re
sponsibility of correctly specifying dependencies.

• "Proportional complexity" is achieved by providing a flexible modular structure
in which reusable abstractions can be easily defined.

• Methodological neutrality compels a careful choice of basic data types and prim
itive operations.

Before examining the specifics of Vesta's SDL, we should pause and consider
where these requirements and their consequences are leading us. The properties
above are attractive, to be sure, but they must be weighed against the inherent disad
vantage of burdening system developers with an additional programming language.
The shortcomings of conventional system description languages are familiar to de
velopers, yet many would prefer the devil they know to the devil they don't. The
semantics of those languages contribute substantially to their deficiencies. For that
reason, Vesta offers a new language, even though that inherently raises a barrier to
its adoption. Chapter 12 evaluates the significance of that barrier in the light of ex
perience.

5.2 Language Highlights

Unlike many languages used to describe software construction, SDL is a complete
(though spartan) programming language with a well-defined syntax and semantics.
In a nutshell, it is a scripting language that is functional, modular, lexically scoped,
and dynamically typed. 1 Its value space contains booleans, integers, text strings, lists,

1 All values are typed and operations are type-checked at execution (interpretation) time.
Static typing is optional; that is, there are simple provisions in the syntax for annotating the
types of variables and function results, but these annotations serve only as comments, and
the current Vesta evaluator ignores them.



5.2 Language Highlights 61

closures, and bindings. Bindings are ordered lists of name-value pairs, closures are
functions with bound values for non-local variables, and the remaining data types
are the familiar ones from C-like languages and LISP. Like every scripting language,
SOL depends on an extensive collection of built-in and library facilities, so that pro
grammers can write their scripts economically. Accordingly, the language contains
about sixty built-in functions for arithmetic and boolean operations, for basic manip
ulations of texts, lists, and bindings, and for invoking external tools. There is also a
built-in function for applying a closure to a list of values in parallel, which is used to
achieve coarse-grained parallel compilation.

Why use a functional programming language as the basis for software descrip
tions? A functional language forms a tractable basis for caching of actions (function
calls), and that caching is the foundation for Vesta's incremental building mecha
nism. However, functional languages are alien to most programmers so although
SOL has functional semantics, it adopts a C-like syntax and preserves C semantics
wherever practical in order to be more accessible to the average developer.

Whatever the form of the language, it must not force the system developer to
write a build script as a monolithic entity. That is, the language must enable the
system developer to organize the instructions for building a system as a set of mod
ular units. SOL therefore allows one system model to reference, or import another,
thereby creating a hierarchical structure that can reflect the component structure of
the software system itself. The individual component models are often similar in
structure, as shown in the next chapter, and can frequently be constructed by filling
in the blanks in a standard template. In essence, this is "programming by copying",
a time-honored technique, especially with scripting languages.

Modular structure is intended to help localize information, which is generally a
wise methodological principle for organizing software systems. However, the nature
of the build process frequently requires broad, systematic alterations of default be
havior, and the description language must accommodate these situations gracefully.
For example, a customized action may apply to an entire build ("build this program
and all the libraries it uses with debugging symbols") or to a large part of it ("build the
graphics library with optimization level 2"). In practice, this means that the functions
for building a system must be sufficiently parameterized that the construction of the
individual components can be sensibly customized by the callers of those functions.

A moment's thought reveals that conventional function parameters are inade
quate to this task. Consider invoking the C compiler. It accepts a number of explicit
parameters on its command line, including the source file to be compiled, but it has
implicit parameters as well. In fact, every file in the file system that the compiler can
access as a consequence of C's #inc1ude directive is a potential parameter, not to
mention environment variables and other information supplied by the operating sys
tem. This is a potentially vast state space that can and frequently must change subtly
from one compilation to the next. Since repeatability requires a precise description
of this state, SOL must provide a way to represent and manipulate it. Clearly, passing
as an explicit parameter each and every file that might be needed by a compilation is
not practical.
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How then, is this potential chaos of customization controlled? Individual system
descriptions are, indeed, parameterized extensively. This makes it possible to local
ize the setting of the actual, customized values of parameters near the root of the
hierarchy of system description modules. But assigning all these parameters indi
vidual names in a flat name space is impractical. Instead, the current construction
parameters are collected together in a single composite value called the environment.
In addition to parameters that control how tools like the compiler and linker are in
voked, the environment passed to each such tool contains a complete representation
of the file name space in which the tool is to run. That is, when run under Vesta's
control, compilers, linkers, and other development tools access all of their data as
named entities in a Vesta environment rather than the actual file system. (How this
works will be described soon.) SDL's binding type is used to represent environments.

The Vesta notion of environment is central. A precisely specified build is noth
ing more than a series of tool invocations (e.g., compiles and links) in a controlled
naming environment. That environment changes subtly but crucially on each tool in
vocation, and the process of constructing these many slightly different environments
must be both convenient to express and efficient to implement. So, SDL provides:

• a mechanism by which the current environment is easily passed between func
tions,

• a binding data type used to represent naming environments (including build cus
tomizations and file directories), as well as language facilities for easily creating
and modifying bindings,

• a language primitive for executing a tool in a particular environment, and
• a closure data type for delaying tool invocations until the files they produce are

needed.

The sections that follow consider these particular aspects of SDL in more detail.

5.2.1 The Environment Parameter

Since bindings used to represent environments play such an important role in system
descriptions, SDL treats them specially. Every Vesta function takes an implicit final
parameter named " . " (pronounced "dot") denoting the current environment. That is,
a function declared with n explicit formal arguments actually has n + 1 arguments,
the last being the implicit formal parameter named " . ". The name " ." is a legal
Vesta identifier, so it can be used as any other identifier would be. A function with n
formal arguments can be called with either n or n+1 actual arguments. In the former
case, the current value of " . " is bound to the implicit formal parameter " . "; in the
latter case, the last actual parameter is bound to the implicit formal parameter" . ".
The first of these turns out to be the overwhelmingly common case, that is, " . " is
usually "inherited" by a callee from its caller.

The name" . " was chosen to suggest "current naming environment" by analogy
with Unix's use of" . " for the current directory. However, the reader who is familiar
with Unix should not take the analogy too far. When a tool runs under Vesta, the
file system name space that the tools sees is indeed specified by the current naming
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environment, but the environment is not literally handed to the tool as its working
directory. Section 5.2.3 explains this point in detail.

5.2.2 Bindings

Because of its use to represent the naming environment for tools (including build
customizations and the file name space), the binding is perhaps the key data type in
SDL. A binding is an ordered mapping from names (text strings) to arbitrary Vesta
values and is expressed with the following syntax:

[namel == valuei; ... .name; == value; ]

Bindings can be nested, giving rise to a hierarchical name space. For example, Fig
ure 5.la shows a binding that might be used to specify the options for compiling and
linking C++ programs. Figure 5.lb shows its representation as a tree. The hierarchi
cal structure arises because a binding is itself an SDL value.

[ Cxx= [ switches= [ compile= [opt="-Ol"], link= [strip="-s"] ]]]

(a)

Cxx

switches

compile

opt="-Ol"

(b)

link

strip="-s"

Fig. 5.1. Code and graphical representation of a binding of build options.

Vesta bindings are also used to represent file system trees in a natural way. Each
directory in such a file system is represented by a binding that maps each name in
the directory either to a subdirectory (a nested binding) or to a file (a text valuej.?
Hence, a directory d containing files named 11 and 12 with corresponding contents
Cl and C2 would be represented by the binding d == [11 == Cl, 12 == C2].

SDL includes syntax and operators for creating bindings, selecting a binding
element by name, merging two bindings, and subtracting elements from a bind
ing. Bindings are constructed using the syntax we have just seen. The value named

2 A brief implementation aside: Because file contents are treated in SDL as text values, the
implementation must be able to handle large text values that are read and written as files
are; it does this by representing such values internally as pointers to files stored in the
repository. These pointers are described in Section 7.1.1.



64 5 System Description Language

bI b2

/\ /\
foo=l bar bar baz

/\ /\ 1
a=l b=2 b=8 c=9 d=l

bI + b2 bI ++ b2

/\ /1\
foo=l bar baz foo=l bar baz

/\ 1 1/\ I
b=8 c=9 d=l a=l b=8 c=9 d=l

Fig. 5.2. The results produced by overlaying (+) and recursively overlaying (++ ) two bindings,
bI and bz.Notice that in bI + b2,the bar component of bI is ignored, while in bI ++ b2,the bar
components of bI and b2 are overlaid recursively, with the values from b2 taking precedence.

n in the binding b is selected by writing bin. For example, if the binding in Fig
ure 5.1 were named options, the compiler switches would be selected by writing
options / Cxx/ swi tches / compi le, which evaluates to the singleton binding
[ opt = II -01 11 J. The use of" /" to descend a binding's name hierarchy corre-
sponds directly to the similar use in the Unix file name space and makes it particu
larly natural for the writer of Vesta system models when representing directory trees
with bindings.

SDL includes syntax that makes it easy to construct bindings including files from
the same package directory as the system model that refers to them. Consider the
following example.

files
h_files = [ Lex.H , Scan.H , Index.H ];

This clause, placed at the top of a system model, introduces the identifier h.f i 1e s
and binds it to a binding of three elements named Lex. H, Scan. H, and Index. H.
Each of these elements is a text value defined by the contents of the correspondingly
named file in the directory in which the system model resides.

Bindings are combined (that is, merged) using the overlay (+) and recursive over
lay (++) operators. The expression b, + b: is the binding containing the union of the
names in bI and b2; for those names that appear in both bindings, the value bound
to the name in b: takes precedence. The binding bI ++ b: is like b, + b2, except
that where both bindings contain the same name, and when that name is bound to a
nested binding in each, the nested bindings are overlaid recursively. Figure 5.2 shows
an example use of the + and ++ binding operators.

The overlay and recursive overlay operators provide the basic machinery for ap
plying customizations and for modifying a binding that represents a directory tree.
For example, if " . " is a binding denoting the current environment, and" . / root"
is the root of a file system, then the environment can be extended to include the extra
directories and files contained in the binding f s by writing:

. ++= [ root = fs l :

As in C, "a op= b" is shorthand for "a = a op b".
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The overlay operators are also handy for overriding compilation options. Suppose
we wanted to alter the build options shown in Figure 5.1 so as not to use optimization
(by setting the compiler flag "-00"). We could write:

options ++=

[Cxx = [switches = [compile = [opt = "-00"]]]];

This kind of modification, in which one wishes to alter an element of a binding nested
several levels in the naming hierarchy, occurs so commonly that SDL includes a
syntactic shorthand to express it conveniently. The same overlay can thus be written:

options ++= [ Cxx/switches/compile/opt = "-00" ];

By definition of the recursive overlay operator, this assignment leaves the binding
Cxx/ swi tches / link unchanged, but it binds the opt element of the compile
binding to "-00". As another example, the following fragment of SDL adds three
files to a specific point in a file system tree represented by a binding

where h_files is as defined above.
These examples demonstrate how selected subtrees of the environment can be

changed by a single source statement in a Vesta model. More generally, they illus
trate how easily new naming environments can be constructed in SDL. The imple
mentation of the Vesta evaluator makes binding manipulations inexpensive, so the
traversal and manipulation of these "directory" structures is extremely efficient com
pared to conventional file systems. Thus, customized naming environments, which
are in effect entire file system name spaces, can be created for the particular needs of
each tool invoked during a Vesta system build.

The ability to create custom naming environments easily and cheaply has a pro
found effect on the way developers think about system building. In traditional devel
opment environments, creating such customized file systems would be unthinkable
because the name space, being implemented by the file system, is stored on disk and
is expensive to modify. Therefore, rather than collecting files in one conveniently
organized binding, Unix environments use search paths (see Section 2.3) to guide
tools to find the files they need, which are located in various places in the file system.
In essence, a development environment needs to group files in a variety of ways for
different purposes, but a file system directory is only capable of representing one of
those groupings efficiently. Vesta's bindings escape this limitation by making it easy
and inexpensive to construct a custom file system for each tool invocation.

5.2.3 Tool Encapsulation

The purpose of a scripting language is to provide machinery that permits easy com
bination of large blocks of work performed outside the language. In the case of soft
ware construction, and therefore the Vesta language, those blocks of work are carried
out by external tools like compilers and linkers. Consistent with the functional nature
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of SDL, invocations of external tools are expressed as function calls. Those invoca
tions occur through a built-in primitive called _run_tool, which enables an arbi
trary tool to be used under Vesta without modification and invoked in an execution
environment defined through the scripting language.

What is that execution environment? It consists of the complete file name space
available to the tool, its standard input s tdin, the command line arguments with
which it was invoked, and the Unix environment variables. Because this execution
environment is controlled by the scripting language and therefore by the Vesta user,
the environment is said to be encapsulated. The encapsulation is performed in such
a way that the Vesta system can automatically track and record the values that the
tool uses from its execution environment. Knowledge of these dependencies on the
environment is essential for proper caching of the results of tool invocations, which in
tum is essential for consistent incremental building. Chapter 8 examines this subject
in detail.

The _run_tool primitive takes parameters that identify the tool to run, the plat
form on which it is to execute.' its command line, and the values that should be
placed in the encapsulated environment in which the tool executes. It returns a bind
ing whose elements represent the tool's outcome, including any files created by the
tool. The .zun.t.oo l primitive also takes some arguments that specify what to do
about caching the result of the tool invocation in exceptional cases (for example, if
the tool returns a Unix error code or if it writes anything to its standard error output).
The complete specification of _run_tool appears in Section A.3.4.8.

The environment parameter" ." is a key argument to .zun.t.ooL It defines both
the tool's environment variables (that is, the Unix environment variables described
in Section 2.3) and the file system name space in which the tool is to run. If the
value . / envVars is defined, it is taken to be a binding that defines the names
and values of environment variables to be set for the tool's execution. If the value
. / root is defined, it is taken to be the root of the file system that the tool will be
able to access while it executes. More specifically, an absolute pathname referenced
by the tool is looked up in . /root, while a relative pathname is looked up in the
nested binding. /root/ . WD. This lookup occurs through the cooperation of the
_run_tool machinery, the Vesta repository, and the Vesta evaluator. Section 3.1.2
touched on this briefly, and Part III examines it in greater detail.

Although the .z'un.t.oo l function provides a flexible means for invoking exter
nal tools, it is a low-level primitive. Few user-written system models need to call it
directly. Instead, most calls of _run_tool are "wrapped" in functions that are more
convenient for a developer to use. Such functions can hide platform-specific details
of tool invocation, enable multiple compilations to be performed together (or in par
allel), and so on. These wrapper functions are part of Vesta function libraries called
bridges, which are discussed in the next chapter.

3 The .zun.t.oo I implementation maps the platform name to a list of suitable machines,
using a site-specific configuration table, then selects a machine from the list based on its
current load characteristics.
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5.2.4 Closures

A closure is a function paired with a mapping (also called a context) that supplies
values for all of the unbound variables appearing in the function's body. In SDL,
closures are first-class values; that is, they can be passed as parameters, bound to
names, or embedded in data structures just as any other value can.

Consider the SDL fragment in Figure 5.3. When evaluated, this fragment returns
a binding with two elements named f and g, each of which is a closure. The name f
is bound to a closure whose body is the SDL expression return x + blcount;
and whose context maps the name b to a binding of two components, an integer
named count with value 3 and a text string named label with value "abc". This
closure, when invoked with an integer parameter, returns an integer whose value is 3
greater than the parameter. Similarly, in the binding computed by this SDL fragment,
the name g is bound to a closure whose body is the SDL expression return strl
+ b/label + str2; and whose context maps the name b in the same way as
the closure f does. The expression g ( It xyz It, " pqr " ) evaluates to the text string
"xyzabcpqr".

b = [ count = 3, label = "abc" ];

f(x) { return x + b/count; };
g(strl, str2) { return strl + b/label + str2; };
return [ f = f, g = g ];

Fig. 5.3.Closures defined by SDL functions.

A closure is generally created by an explicit SDL function definition. As the
example above illustrates, closures created in this way may have an arbitrary list of
formal parameters. Closures are also created implicitly by Vesta system models. In
particular, each system model implicitly defines a function whose body is the text
of the model and which takes a single parameter, " . ". The closure consists of this
function and an empty context, since no free variables are permitted in the body of a
system model.

Closures of either sort are invoked using the normal function call syntax. The
expression g ( "xyz ", "pqr 11 ) is an example for a closure defined by an explicit
function definition. The next section shows an invocation of a closure defined by a
system model.

To begin an evaluation, the Vesta evaluator invokes the closure defined by the
model to be evaluated. This closure expects a single argument, and the evaluator
passes an empty binding as that argument.

Closures have several uses. A collection of callable functions can be represented
by a binding that maps function names to closure values, as in Figure 5.3. If the name
in t f were bound to the result of evaluating the system model in this figure, then the
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appl build_app(/* argsl */);
app2 build_app(/* args2 */);
app3 build_app(/* args3 */);
return [ appl, app2, app3 ];

Fig. 5.4. System model that builds three applications.

appl () return build_app(/* argsl * I) ; } ;

app2 () return build_app(/* args2 * I) ; } ;

app3 () { return build_app(/* args3 * I) ; } ;

return appl, app2, app3 ] ;

Fig. 5.5. System model with three closures that build applications.

closure g could be invoked by writing in t f ( ) / g ( "xyz ", "pqr " ) . This is a
convenient idiom for representing abstract interfaces.

Closures can also be used to delay evaluation until it is certain that the evaluation
is required. For example, a system model might contain the instructions for building
several applications. If the model is structured as a simple binding, as in Figure 5.4,
then evaluating the model unconditionally builds all three applications. However, if
each application's construction is a closure, as in Figure 5.5, then the evaluation of
the system model merely produces a binding containing three closures." The system
model that uses (imports) this binding, say using the name bui Ld.apps, can then
selectively build the application(s) it wants, e.g., bui Ld.apps ( ) / app2 ( ) , and
avoid the cost of unnecessarily building the others.

5.2.5 Imports

The import clause enables one system model to refer to another and therefore, ul
timately, to invoke the closure it creates. More precisely, the import clause binds a
local identifier to the closure corresponding to the model being imported. Here is a
small example:

import
sample = Ivesta/vestasys.org/sample/21/build.ves;

II assume that sample returns a binding with members
II named a and b, each of which is a closure that
II accepts an integer parameter and returns a binding.

return sample()/a(l) ++ sample()/b(23);

4 The binding constructor [ a , b ] is syntactic shorthand for [ a a, b b ].
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This system model begins with an import clause binding the name sample to the
closure corresponding to the model stored in the Vesta repository under the given file
name. This closure is then invoked twice. The two components a and b of the result
are selected and are themselves invoked, each with an integer parameter, yielding
two bindings. The bindings are then combined with the recursive overlay operator to
form the result of evaluating the model.

This is a nonsensical example, but it bears some resemblance to the way in which
the closures of imported models are generally used. In particular, such closures often
return bindings consisting of a number of other closures, which are then selectively
invoked by the importing model as appropriate. Because closures are first-class val
ues, they need not be invoked immediately, as in this example, but may be held in a
data structure (typically a part of the environment binding) and invoked subsequently.
This technique is used extensively in realistic system models.

In Summary

The Vesta system description language provides a semantically precise scripting fa
cility with a few key features - bindings, closures, flexible parameterization - that
are well-matched to the needs of developers writing instructions for repeatable, in
cremental, consistent, and scalable builds. However, it is a big step from the rather
simple language described above to a practical set of facilities for writing such in
structions conveniently. We take that step in the next chapter.
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Building Systems in Vesta

The preceding chapter provided the motivation behind Vesta's system description
language and presented its primary constructs. This chapter focuses on the use of
SDL to express complex build instructions. Of course, there are many ways to do
this and, as noted in the preceding chapter, SDL strives to be"methodology-neutral".
This chapter presents a particular set of choices - a methodology, or a style - that
has worked well in practice. Before getting into the details, however, we need to
examine some of the considerations that motivated the specific choices this method
ology embodies.

The previous chapters mentioned several times the importance of repeatable con
struction. The desire for repeatability gave rise to Vesta's immutable source files cou
pled with versioning as the mechanism to represent change. System models, like all
Vesta sources, are contained in packages in the Vesta repository and are versioned,
immutable, and immortal. Hence, the instructions for building a particular version of
a software artifact are never lost.

System models are also complete. This means that the result produced by carry
ing out the instructions embodied in a system model depends only on the information
in that model and the other models it imports either directly or indirectly. No file,
environment variable, or other aspect of the surrounding system on which Vesta is
being run can implicitly affect the evaluation of a system model. Thus, an evaluated
model and the models it imports form a complete record of the sources, instructions,
and tools contributing to a build.

Together, immutability and completeness imply that a system model must specify
the particular version of each source file and model that contributes to a build. At first
blush, this would seem impractical, since the process of creating a new version of a
package could involve updating the version number of every source file referenced
within a model. However, the burden of referring to correct source versions from a
system model is mitigated by four factors.

Sources are versioned and imported at the granularity of packages (directory
trees), not individual files.
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Due to the hierarchical arrangement of packages, updating the version of a single
high-level import can indirectly import new versions of many packages lower in
the hierarchy.

• A model directly references only source files that exist in the same package as
the model itself, though it may import models inside or outside the package.
References to source files (including models) within the package version do not
require an explicit version specification because the package is versioned as a
whole. That is, these file references are implicitly bound to files in the same
package version as the referencing model itself.

• Tools can help the developer to revise a system model's imports. Vesta provides
such a tool, called vupdate, that creates a new model from an existing one by
updating the versions of imported models according to the setting of command
line parameters.

Since by the completeness and immutability principles, everything needed for a
build must be explicitly named in a system model, that model (including transitively
everything it imports) must either provide the rules for building a component from its
constituent pieces or must deliver the component already constructed. The latter case
frequently applies when the component is a tool (e.g., a compiler) or a licensed soft
ware library for which no source code is available. In such cases, the binary files are
the "source" for the purposes of system construction, and they are stored as source
files in the Vesta repository. The system models that describe them do no construc
tion at all, but simply name these previously built files. On the other hand, a tool or
library for which sources are available is described by a system model that defines
its construction from constituent parts. Thus, a Vesta system description references
all the components, including construction tools, needed for a build, whether those
components exist as pre-built binaries or are constructed from simpler pieces.

This last observation highlights the necessity of organizing a potentially large
amount of build-related information in a way that is manageable both by an individ
ual developer and by the development organization as a whole, which is the primary
subject of this chapter.

6.1 The Organization of System Models

A system model is the building block in a Vesta system description. A complete
build description of a system is a collection of system models that refer to each other
via import clauses and define every aspect of the build to be carried out. As the
system is developed, these system models must change; they are not written once
and then left untouched. So, just as the architecture of the software system requires
careful organization to accommodate its evolution, so does the build description. It is
therefore appropriate to ask: How should the collection of system models that form a
build description be structured? What principles or methodology should be followed
to create a collection of understandable and usable models? The particular example
developed throughout this chapter embodies specific answers to these questions that
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derive both from the overall Vesta requirements and from the following observations
about software development.

Separate environment. Files in a package under development change more fre
quently than the environment in which that package is built. Consequently, it is useful
to separate the description of the package from the description of the environment
for building the package.

Standard templates. From the perspective of system construction, many packages
have a similar form. For example, a package may build either a complete program
or a body of code intended to be linked into other programs. The former is an appli
cation and the latter is a library. Generally, the system models for applications look
quite similar to one another, as do the models for libraries. The development envi
ronment should take advantage of this similarity by providing standard templates for
these models and by minimizing the amount of "boilerplate" in each. In effect, these
standard forms of models are institutionalized in the development environment. Of
course, they can be modified or entirely bypassed in exceptional cases.

Extensive parameterization. Occasionally, a developer will need a customized en
vironment. The customization might include special versions of libraries, or libraries
compiled in a special way or with a special version of a compiler. Consequently, the
system description for the construction of the environment must be parameterized to
permit an individual developer to create the custom environment needed to develop
a package. Moreover, examining the space of sensible customizations quickly yields
the conclusion that the parameterization required is extensive.

Library hierarchy. Any constructed system is linked together from a collection of
components, typically derived object files and library archives. The dependencies
between these components induce an abstract hierarchy, the library hierarchy. Some
tools used during the build process, notably the Unix program linker, require the
libraries they process to be presented in a total order that is consistent with the library
hierarchy's partial order. Since the library hierarchy is distinct from the package
naming hierarchy, system models must represent the library hierarchy explicitly.

Defaulting. Systems are built by executing tools (e.g., compilers and linkers), which
generally have extensive options that are needed only for specialized purposes. These
options must be accessible from Vesta models, but most users of the tools never
need to be aware of them. Consequently, the mechanisms for compiling and linking
package components must hide these rarities by default, without compromising a
developer's ability to exploit the full power of the tools when necessary.

These considerations guided the organization of a particular standard construc
tion environment, one largely based on the notion of a hierarchy of library descrip
tions. The remainder of this chapter examines that environment as it is used by a
developer.
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6.2 Hierarchies of System Models

To understand concretely how a build description is organizedas a package hierarchy,
we will examine an extended example: a hypothetical email system. Figure 6.1 shows
the hierarchy of packages comprising the complete release of our mail system. A
directed arrow in the figure links a system model in one package to a model it imports
from another package. At the lower right of the figure are two library packages named
mail/send.rev and mail/index, for transporting and indexing mail, respectively. The
release consists of two application packages named mail/inc and mail/search, which
respectively build applications that incorporate newly received mail into an inbox
and carry out queries on mail messages. (A more realistic mail system would, of
course, have additional application and library packages, but two of each will suffice
for the purposes of this chapter.)

At the root of the tree is the release package itself. The mail/release package
does not contain any source code. Instead, its model imports the standard environ
ment tcommon/std.env), the packages for the two application programs, and an um
brella library package named mail/lib.umb, which itself imports the two mail-related
libraries.

As shown in Figure 6.1, the standard environment imports two kinds of models:

• the "bridge" models that export interfaces for invoking collections of tools, such
as language-specific compilers and linkers, and

• the standard libraries required by client applications (in this example, only two
standard C libraries are shown).

Looking at the subtree rooted at the mail/lib.umb package, we see that library pack
ages themselves may be arranged in hierarchies. In fact, the standard construction
environment supports three kinds of libraries: leaf libraries, which are libraries built
from source, pre-built libraries, which are libraries that exist only in binary form,
and umbrella libraries, which are collections of other libraries (any combination of

mail/
release

)
common! common! c!

e exx pthreads
J

Bridges

mail!
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Fig. 6.1. The packages of a hypothetical mail system and their imports.



6.2 Hierarchies of System Models 75
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Fig. 6.2. An alternative arrangement of package imports for the mail system of Fig. 6.1.

umbrellas, leaves, and pre-builts). In Figure 6.1, mail/lib.umb is an umbrella library,
mail/send.rev and mail/index are leaf libraries, and e/pthreads and e/libe are pre-built
libraries.

Umbrella libraries are a convenient way to gather up a collection of related li
braries into a single conceptual entity.1 In this example, the umbrella enables the
release package to import one library package rather than two. In larger software
systems - such as the release model for the Vesta system itself, which contains nine
leaf libraries - the use of umbrella libraries makes client models simpler and more
succinct.

To emphasize that the particular arrangement of import relationships shown in
Figure 6.1 is a methodological choice rather than a correctness requirement, Fig
ure 6.2 gives an alternative arrangement. The essential difference in the two arrange
ments is the way in which the umbrella package is imported. In the first arrangement,
the umbrella package is named once, by the release model, while in the second ar
rangement, it is imported twice, by the inc and seareh packages. Both are logically
correct, in the sense that they completely capture the information necessary to build
our example mail system. However, the first arrangement is more convenient opera
tionally because only one import statement needs to be updated when a new version
of the umbrella package becomes available. While the difference is relatively minor
in this simple example, it becomes more compelling when the umbrella is used in
many places, as it would be if the mail system had many applications in addition

1 Umbrella libraries also provide the place to express the order in which the child libraries are
given to the program linker so that they link correctly. This is the order noted in the previous
section, a total order consistent with the partial order induced by the library hierarchy.
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import
std_env

Ivesta/vestasys.org/cornrnon/std_env/9/build.ves;

II build the current environment
• = std_env()/env_build(IIAlphaDU4.0 1l

) ;

II instructions for building the complete mail system
II would corne next ...

Fig. 6.3. The initial part of the hypothetical mail/release system model.

to inc and search. For concreteness in the subsequent discussion, our example mail
system will use the structure shown in Figure 6.1.

We can now look inside the mail/release model, to see how it establishes the
building environment for the mail system components. It begins as shown in Fig
ure 6.3.

The SDL code bears a structural resemblance to the example we saw in Sec
tion 5.2.4. The import clause binds the identifier s t.d.errv to the closure corre
sponding to version 9 of the standard environment model. That closure is invoked by
the expression s t d.env ( ) . This invocation returns a binding that contains a num
ber of closures. One of them is bound to the name env.bui Ld; its job is to build and
return a suitable construction environment for a target platform named by its argu
ment. We see this closure being invoked to build an environment for the DEC Alpha
platform running Digital Unix version 4.0. The environment (a binding) thus created
is bound to the Vesta identifier " . " for use by the rest of the mail system build. The
choice of" . " is not arbitrary; it means that the environment will be passed by default
as a parameter to any other closures that the mail/release model invokes (recall the
special properties of" . " as explained in Section 5.2.1). Thus, once the environment
is set up by the first two statements of the release model, the rest of the system build
ing instructions never need to mention it explicitly. Nevertheless, it is completely
and immutably specified, because of the explicit version number included in (and
required by) the import clause.

Before we can understand the remainder of the mail/release model, we must look
into the four models it imports, shown in Figure 6.1.

6.2.1 Bridges and the Standard Environment

As Figure 6.1 suggests, the std.env model imports a collection of bridge models.
Each bridge model exports an interface (in the sense of Section 5.2.4) to a collection
of related tools. Vesta bridges are models written in SDL, and they are interpreted by
the Vesta evaluator just like any other model. They are not hard-wired into the Vesta
system in any way.

Bridge models must handle the complexities of interfacing to external tools and
supporting customized builds, so they tend to be much more complicated than the
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models that use them. The s t d.env model and the seven bridge models compris
ing the standard construction environment total roughly 1,800 lines of SDL code.
Approximately two-thirds of that code is in the bridges for C/C++ and Modula-3
programs. These bridges export functions (closures) for building programs, pre-built
libraries, leaf libraries, and umbrella libraries from code written in their respective
languages. (For concreteness, we limit the discussion here to the C/C++ bridge. The
facilities of other bridges are similar.)

Strictly speaking - and this is a crucial point - the closures for building the
three types of libraries don't actually do the building! The complete information
necessary to build a library is not available, in general, until the program in which
the library will be used is built. The system model that builds that program supplies
the needed information, at which time the library can be properly constructed. Hence,
the closures provided by the bridge for each library type do little more than embed
the library source files in a binding that serves as part of a set of instructions for
constructing the library later.

This approach differs sharply from the conventional one, in which particular ver
sions of standard libraries are constructed and placed in standard locations in the file
system hierarchy. The Vesta standard environment places highly parameterized con
struction recipes at the developer's disposal rather than particular, previously built
versions. This is an essential distinction, and the resulting differences in flexibility
and development ease are enormous. We'll see some of that flexibility later in this
chapter.

So, the c++ bridge supplies three functions named leaf, prebuil t, and
umbrella that simply collect the values passed to them into a binding that rep
resents (parameterized) instructions for building the library.

The program function defined by the C++ bridge does the real work of building
an application. Its parameters include the source code of the application and the
values representing the libraries that the application requires. These values are, of
course, the bindings returned by the library-creating functions above. The program
function also takes parameters that define the customizations that control the details
of the construction process.

We will cover some additional details of these bridge functions as we see them
in use in our mail system example.

6.2.2 Library Models

Let's now look at the mail system's library models, beginning with the mail/index
library, whose model is shown in Figure 6.4. The model starts with a f i 1es clause
that binds local variable names to local files and directories within the package; the
paths in a f i 1e s clause are interpreted relative to the directory containing the model
itself. In this case, the first four lines of the model introduce three local identifiers
(c.f i Le s, h_files, and p.r i v.h.f i Le s) whose values are bindings that asso
ciate the listed names with the corresponding local file contents. For example, the
identifier pr i v _h_f i 1 e s names a binding that associates the name IndexRep . H
with the contents of that local file. Thus the source files are arranged in three groups:
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II This is mail/index/3/build.ves
files

c_files = [ Lex.C, Scan.C, Index.C ];
h_files = [ Lex.H, Scan.H, Index.H ];
priv_h_files = [ IndexRep.H ];

return . ICxxl leaf ( II libMailIndex. a II ,

c_files, h_files, priv_h_files);

Fig. 6.4. The model for building the leaf library of the hypothetical mail/index package.

(1) C++ source files that must be compiled to produce object files, (2) header files
that are provided to clients of the library, and (3) private header files that are required
only by the implementation.

The body of the model consists of a single function call. It invokes the C++
bridge function leaf to build a leaf library from the files mentioned just above.
We learned in the preceding section that this function simply collects the files into a
single binding that will be passed to the program function when an application (in
this case, inc or search) is built. The leaf function gives the library binding the
name libMailIndex.a.

The structure of the model for the mail/search library is similar, so let's proceed
to the umbrella model mail/lib.umb, shown in Figure 6.5. The first three lines of
this model import the two top-level models of the umbrella's component libraries,
binding those models to the local identifiers s erid.z-cv and index. The body of
the model first assigns the name 1 ibs to a list of the libraries comprising the um
brella. (A list is denoted by a comma-separated sequence of values enclosed in angle
brackets.) Note that the list of libraries also includes the standard pthreads and libc
libraries. These libraries do not have to be imported, but instead are accessed from
" . ", where they were installed by the standard environment. Including these stan
dard libraries in the umbrella obviates the need for application models to mention
them; in effect, all library code for the mail applications, regardless of its location, is
made available through the umbrella. The model's final line invokes the C++ bridge's
umbrella function, which collects the supplied libraries in an umbrella with the
name libMailUmb. As with the leaf library above, this umbrella represents the
instructions for building the set of libraries under the umbrella, not the result of car
rying out those instructions. That will happen later when an application program that
uses the umbrella is built.

The library hierarchy provided by umbrella models greatly simplifies the devel
oper's job in specifying which libraries are needed to link a complete program and
the order in which they must be listed on the linker's command line. Rather than hav
ing to determine and explicitly specify in order the set of all necessary library files,
as is generally required in the Unix environment, the developer specifies a small
number of higher-level umbrellas. (In the mail system example, it's a single one.)
Consequently, the developer's models are simpler and more robust against changes
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// This is mail/lib_umb/18/build.ves
import

send_rev =
/vesta/vestasys.org/mail/send_rev/l/build.vesi

index =
/vesta/vestasys.org/mail/index/3/build.vesi

libs = < send_rev(), index(), ./C/libs/e/pthreads,
./C/libs/e/libe >i

return . /Cxx/umbrella (1I1ibMailUmb ll
, libs) i

Fig. 6.5. The modelfor buildingthe umbrellalibraryof the hypotheticalmail/lib.umb package.

in the structure of libraries. The C++ bridge function program handles the com
plexities of constructing a suitable command line for the Unix linker by "flattening"
the umbrella hierarchy.

Our mail system doesn't have any pre-built libraries, only an umbrella and two
leaves. However, the std.env umbrella incorporates two libraries that are pre-built:
cllibc and c/pthreads. These models are quite similar in structure to a leaf library;
but they deliver binary data rather than source code and, of course, are not subject to
later customization during execution of the program function.

Now that we've seen what library models look like, we can turn to the application
models that use them.

6.2.3 Application Models

Figure 6.6 shows the system model for building the hypothetical application pack
age mail/search. The model begins with an enumeration of the sources comprising
the application. The actual construction occurs when the program function of the
Cxx bridge is invoked. This function first builds the libraries specified by its 1 i b s
argument, which in this case lists a single umbrella library taken from the environ
ment. It then augments the current environment to include the header files in the
h.f i 1e s argument, compiles each of the files in the c _f i 1e s argument, and links
everything together. The value returned by the function is a binding that maps the
name mailsearch to the resulting executable.

Notice that the package expects to get the mail umbrella library libMailUmb
from its environment (" . "). This reflects the structure shown in Figure 6.1, where a
release model imports particular versions of the standard environment and the mail
umbrella, adds them to " . ", and then imports and builds the two mail applications in
this environment. Had the mail system been structured as in Figure 6.2, an explicit
import of mail/lib.umb would appear at the start of this model.



QueryAST.C, ParseQuery.C, Search.C ];
QueryAST.H, ParseQuery.H, Search.H ];
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II This is mail/search/6/build.ves
files

c_files
h_files

II build program
libs = < .ICxx/libs/mail/libMailUmb >;
return

. ICxx/program( "rna i l sear-ch", c_files, h_files, libs);

Fig. 6.6. The model to build the search application of the hypothetical mail/search package.

6.2.4 Putting It All Together

We can now return, finally, to the model at the root of the package tree that defines
our hypothetical mail system. The beginning of this model appeared in Figure 6.3.
Based on the structure of the mail system (Figure 6.1), we would expect the release
model to import four packages (the standard environment, the mail umbrella, and the
two mail applications), build the environment, put the umbrella into it at the point
in the naming hierarchy expected by the applications, then build the two applica
tions. This would indeed be a possible structure (see Figure 6.7), but there are other
considerations.

import
std_env

Ivesta/vestasys.org/common/std_env/9/build.ves;
umb =

Ivesta/vestasys.org/mail/lib_umb/18/build.ves;
inc =

Ivesta/vestasys.org/mail/inc/4/build.ves;
search =

Ivesta/vestasys.org/mail/search/6/build.ves;

II bind the standard environment to '.'
• = std_env () I env_build ( II AlphaDU4. 0 II) ;

II add umbrella to environment
• ++= [ Cxx/libs/mail/libMailUmb = umb() ];
II build and return applications
return [ progs = inc() + search() ];

Fig. 6.7. A possible but impractical release model for the hypothetical mail system.

A release model organized in this way would be complete and self-contained.
This would be an advantage for the developer of the mail system, whose work is
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then isolated from external influences. However, suppose that developer were part of
an organization that provides a suite of applications as a single release. That is, the re
lease of the mail system does not occur in isolation, but rather in conjunction with the
release of many other applications and libraries. If the mail system's release model
is self-contained, then consistent construction of the larger release that includes the
mail system and the many other programs will be difficult, as there will be no way
to ensure that they are all using the same version of the standard environment.

It's easy to see where this observation leads: another level of models and parame
terization. That is, the mail system release model is not actually the "root" of a build.
It doesn't explicitly import the standard environment itself, but instead assumes it has
been set up by its invoker. Moreover, instead of building the umbrella and applica
tions, it provides its invoker with closures that do so. The actual building of the mail
system and the other packages is done by a "master" release model. With these alter
ations, the mail system release model looks approximately as shown in Figure 6.8.
(Figure 6.9 contains a semantically equivalent but structurally more realistic version,
which exploits some additional SDL features to produce a more easily maintained
set of building instructions.)

II This is mail/release/21/build.ves
import

inc =

Ivesta/vestasys.org/mail/inc/4/build.vesi
search =

Ivesta/vestasys.org/mail/search/6/build.vesi
umb =

Ivesta/vestasys.org/mail/lib_umb/18/build.ves;

II This closure builds two applications:
progs() { return inc() + search(); }

return [ lib = umb, progs = progs ]i

Fig. 6.8. A model for building the release of the hypothetical mailsystem.

This structure will enable the development organization as a whole to build its
"master" release consistently, but it would seem to leave the mail system developer
without a way to build and test that component individually, since the mail system
release model is no longer self-contained. However, the Vesta system does provide a
way - one that has other benefits as well- which we call controlpanel models.

6.2.5 Control Panel Models

Once a developer has organized the release model as shown in Figure 6.8, there
are only a few details that need to be specified in order to build the component.
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II A more maintainable version of
II mail/release/2l/build.ves
from Ivesta/vestasys.org/mail import

mail-pkgs = [ inc/4, search/6 ]i
umb = lib_umb/18i

II This closure builds all application programs:
progs() {

pkg_results = []i
foreach [ pkg_name = pkg_model ] in mail-pkgs do

pkg_results += [$pkg_name pkg_model()]i
return pkg_resultsi

}

return [ lib = umb, progs progs ] i

Fig. 6.9. A more realistic release model for the hypothetical mail system.

Chiefly, these are the version of the standard environment to be used and any build
customizations (e.g., optimization or debugging switches). These details are properly
viewed as external to the component and are frequently more transient in nature than
the instructions for building the component itself. For that reason, it is convenient to
put them in a separate model, which is called a controlpanel model.

The rationale for this name is simple. Such a model is truly the "top-level" model
from the developer's perspective, who presents this model to the Vesta evaluator in
order to get an instance of the mail system built (say, for debugging purposes). This
action would naturally be performed from a graphical user interface, or control panel,
which could provide a way to view and modify the transient details (such as standard
environment version or debugging options) and to invoke a specified version of the
component's release model in a suitably constructed environment. But how, exactly,
would that environment get constructed? By a Vesta model, of course - one that
imports the specified standard environment and alters it according to the specified
options. That model, which is of a highly stylized form, can be "written" by a control
panel, using a simple template into which the information provided by the developer
through the control panel's GUI is substituted at appropriate points.

Despite their name, there is nothing special about control panel models. Indeed,
most development under Vesta has occurred in the absence of a control panel GUI;
control panel models are simply written by hand.2 Writing such models is very
straightforward. By convention, they are named .main.ves. They are highly stylized,
and usually on the order of 10 to 20 lines long, depending on the number of cus
tomizations specified. After creating a suitable environment by importing a specified
version of the standard environment and adjusting parameters to suit the developer's

2 The initial users of Vesta (other than its implementers - see Section 12.1) did build a simple
control panel aUI, but it had somewhat more specialized functionality than the general
purpose control panel envisioned by the previous paragraph.
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needs, a control panel model invokes another model in the same package. Typically,
this is the release model, conventionally named build.ves, which then customarily
compiles and links the package's source code in the prepared environment. As the
previous section showed, the build.ves model is designed to be independent of the
version of the standard environment in use, so it can also be called from elsewhere
(notably, the "master release" model) to build the same package in different environ
ments.

One other factor influences the structure of control panel and release models.
A package may produce several different categories of derived files. For example,
a package may produce executables meant to be exported to clients, test programs,
libraries, and documentation. A developer may not wish to produce each of these
artifacts on every build. So by convention, a package's build.ves model returns a
binding that contains a separate closure for building each category of derived file.
The control panel model then invokes only those closures in the binding that are
currently of interest to the developer. In essence, each category is built lazily.

Figure 6.10 shows a control panel model for our mail system example. The initial
lines import the package's local build.ves model (that is, either Figure 6.8 or 6.9) and
version 9 of the standard environment model, binding them to the names s elf and
s t.d.errv, respectively. Line (1) invokes the env.bu i Ld function of the s t d.env
model to build an environment targeted to Alphas running the Digital Unix 4.0 op
erating system. Line (2) evaluates the local build.ves model, binding the result to the
local name b. Line (3) puts the building instructions for the libraries into the envi
ronment where the application models (of which Figure 6.6 is representative) expect
to find them. Finally, line (4) selects the progs field out of the binding b and in
vokes it. progs is a closure of one argument: the all-important implicit argument
" . ", which was just set up on lines (1) and (3). The result of invoking b/progs is
returned in a singleton binding as the overall result of thepackage build.

As should be evident, most of this control panel model is highly stylized, mean
ing it could easily come from a template. There are really only three pieces of vari-

II This is mail/release/21/.main.ves
import

self = build.ves;
std_env =

Ivesta/vestasys.org/common/std_env/9/build.ves;

II bind the standard environment to /.f

std_env () I env_build ( IIAlphaDU4. 0 II) ;

b self();
++= [Cxx/libs/mail/libMailUmb b/lib()];

return [ progs = b/progs() ];

I I (1)

II (2)
II (3)
II (4)

Fig. 6.10. A control panel model for the hypothetical mail system.
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able information - the package name, the standard environment version, and the
target platform - which can be easily inserted by hand-editing or by a control panel
aUI if one exists. However, without compromising its template-like nature, a control
panel model can accommodate additional customization, which is naturally inserted
between lines (1) and (2) of Figure 6.10. An example appears in the next section.

One final note: the structure describe in this section and the previous one can
be repeated to any number of levels required. That is, for each organizational level
at which applications are aggregated, a pair of models - build.ves and a control
panel model- can be created. This is Conway's Law in action: systems resemble
the organizations that build them.'

6.3 Customizing the Build Process

The standard construction environment includes several different mechanisms for
performing customized builds, that is, builds in which default choices are overridden
in some way. The available customizations range from building against a specified
version of an entire package to compiling a single file of a library with individualized
compiler options. In most cases, as a result of the parameterization used throughout
the standard construction environment models, a developer can override a default by
editing a single line of a package model.

The overrides supported by our standard environment can be divided into two
classes: general overridesand named overrides. A general override is used to alter
the standard environment by adding or replacing bindings in one or more locations.
Since the standard environment is a naming hierarchy, a general override is a binding
that defines new values for selected names in some portion of that hierarchy. A gen
eral override is effected by recursively overlaying (using the ++ operator described
in Section 5.2.2) the overriding value at some point in the standard environment. A
named override is a binding (possibly containing other bindings) that is interpreted
like a table, with the names in the binding(s) being the keys. Typically, the names
specify the entities to which the override applies, such as a source filename or a
library name.

We now consider three uses for overriding supported by our standard construc
tion environment. These cases arose often in our experience with Vesta, so we found
it useful to institutionalize them in the standard environment. However, others can
certainly be imagined and could be implemented by altering the standard environ
ment models.

Build-Wide Overrides. As its name implies, a build-wide override applies to an
entire build. It is effected in a control panel model by applying a general override to
the current environment after the environment has been constructed, but before the
package's own build.ves model is called.

3 As originally formulated, Conway's Law states "Organizations which design systems are
constrained to produce systems which are copies of the communication structures of these
organizations." [16]
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For example, consider Figure 6.11. It is the control panel model of Figure 6.10
with the addition of two lines of code that alter the switch settings for C++ compila
tions. This build-wide override causes all C++ files to be compiled with debugging
symbols and optimization. The override applies to all programs built as a result of
evaluating this control panel model, which of course includes all of the libraries they
import, either from within the mail system or from the standard environment.

II This is mail/release/22/.main.ves
import

self = build.ves;
std_env =

Ivesta/vestasys.org/common/std_env/9/build.ves;

II bind the standard environment to '.'
• = std_env () lenv_build ("AlphaDU4. 0 ") ;

II build-wide override
comp_switches = [ debug = l-g3 " , opt = "-01" ];
. ++= [ Cxx/switches/compile = comp_switches ];

b = self();
++= [Cxx/libs/mail/libMailUmb b/lib()];

return [ progs = b/progs() ];

Fig. 6.11. A control panel model with a build-wide override.

This example shows how parameters can be passed to bridge functions through
the environment (that is, through " . "). Because the environment is passed implic
itly on every function call, parameters stashed inside it are available to every bridge
function. The documentation of the bridge interface specifies which parts of the en
vironment are accessed by each of its functions.

Package Overrides. A second kind of override, a package override, is commonly
employed when a package (or package tree, such as our hypothetical mail system)
needs to be built with a non-standard version of a package it acquires from the stan
dard environment. For example, consider the developer of the mail system who in
the course of adding functionality to the mail/index application discovers a small but
debilitating bug in the c/libc library, which is buried deeply in the standard environ
ment. Must he wait until a new version of the standard environment with a repaired
c/libc is built? No! Instead, he checks out that package himself and fixes the bug,
then incorporates his newly corrected version in his mail system build in order to test
the fix. He does this by specifying in his control panel model that c/libc is to be over
ridden with his checked-out version, as shown in Figure 6.12. Note that this model
differs from the one in Figure 6.10 only in the extra pkg_ovs parameter passed to
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the env.bu i ld function. This parameter specifies that checkout version 7/1 of the
c/libc package should be used.

II This is mail/release/23/.main.ves
import

self = build.ves;
std_env =

Ivesta/vestasys.org/cornrnon/std_env/9/build.ves;
libc =

Ivesta/vestasys.org/c/libclcheckout/7/1/build.ves;

II package override
pkg_ovs = [ c/libc = libc ];
II bind the standard environment to '.'

s td_env ( ) I env_bui ld ( "AlphaDU4 . 0 1I, pkg_ovs);

b self();
++= [ Cxx/libs/mail/libMailUmb

return [ progs = b/progs() ];
b/lib() ];

Fig. 6.12. A control panel model overriding the libc package version used in the build.

Once the developer has convinced himself that the fix works properly, he will
check in the c/libc package. Eventually, someone will create a new version of the
standard environment that incorporates it, at which point the mail system developer
can forgo the override and simply import the new standard environment. But, in the
meantime, because the structure of the standard environment supports package over
riding, the developer needed to make only a simple local change to his control panel
model in order to include the repaired library and continue testing his mail system.
It's worth contrasting this with systems less flexible than Vesta in which the devel
oper would have been blocked because he lacked the authority or the knowledge to
rebuild the entire standard environment with one changed component. In such sys
tems, the developer typically faces two unattractive alternatives: submit a bug report
to the appropriate organization and wait for a new version to appear (in days or per
haps weeks) or combine his changed c/libc with other necessary components of the
standard environment in a way that bypasses checks that they were built consistently.
Vesta replaces these alternatives with an attractive one: build the whole system con
sistently without interfering with the development activities of the group responsible
for the standard environment. The mail system developer can still submit his bug
report so that the problem is eventually fixed in the "official" version of the standard
environment, but he need not wait for that version to be built and released.

Library Overrides. We saw that a build-wide override enabled non-default options
to be used for all compilations in the course of a build. The standard construction
environment also includes a mechanism called libraryoverrides to change the way
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a particular library or even a particular file within a library is compiled. This type
of override, unlike the two we have already seen, is a named override, since it must
name the library archive(s) or source file(s) to which the override applies. In the
case that the override applies to an umbrella library, the override also affects all
descendants of the umbrella.

A library override, like a build-wide override, is achieved by recursively over
laying part of the current environment, typically in the control panel model. For
example, suppose we wanted only the clpthreads library to be built with debugging
information included. Figure 6.13 shows a control panel model to do this.

II This is mail/release/24/.main.ves
import

self = build.ves;
std_env =

Ivesta/vestasys.org/common/std_env/9/build.ves;

II bind the standard environment to /.'
• = std_env () I env_build ( II AlphaDU4. 0 ") ;

II library override
· ++= [ lib_ovs/libc.a

[ ovs/Cxx/switches/compile/debug "-g 3 II ]];

II build selected components
b = self();
· ++= [ Cxx/libs/mail/libMailUmb
return [ progs = b/progs() ];

b/lib() i.

Fig. 6.13. A control panel model overriding the libc library construction used in the build.

How does this override work? Inside the. /Cxx/program function, there is a
point at which the libraries are built. At that point, prior to the construction of each
library, the name of the library (here, 1 ibc . a) is "looked up" in . /1 .ib.ovs, If
the name is present, as in our example, its value (or, more precisely, the value of its
ovs field) is overlaid on . / Cxx. Of course, a fresh " . " is used for the building of
each library, so the override affects the construction of the specifically named library
only.

Recall that the construction of each library is delayed until it is needed. Conse
quently, each library is built according to the overrides in force at the time the appli
cation using it is built. Hence, different application programs in a release could be
built using different customizations of the same library. This, however, would imply
a significantly more elaborate control panel model, since it would require construct
ing different environments (that is, values of" . ") for the individual applications built
by the mail system release model.
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6.4 Handling Large Scale Software

For Vesta to accommodate the construction of large scale software, the naming used
by the standard construction environment must be designed to handle a large number
of named artifacts. The standard construction environment addresses this problem
by providing various hierarchical name spaces. There are two in particular worth
mentioning.

First, the names used to specify packages in a package override are hierarchical,
using a name space that (by convention) parallels the repository's package name
space. Notice that in the package override example of Figure 6.12, the pkq.ovs
parameter binds the two-level name c /1 ibc to the new version of the package.

Second, the C/C++ bridge of the standard construction environment provides an
option for naming libraries in library overrides using hierarchical names. We have
already seen that umbrellas can be used to organize libraries hierarchically. As long
as the number of libraries is small, a flat name space suffices to name them (and,
in most Unix environments, this is conventionally what is used). We've assumed a
flat name space in Figure 6.13 in specifying the name of the library (1 ibc . a) to be
overridden. However, a flat name space is insufficient if the same name is used for
two leaf libraries under different umbrellas. To accommodate such a situation, the
bridge has a mode in which libraries are named hierarchically. In this mode, a library
is named in a library override by its path in the library hierarchy, thereby avoiding a
naming ambiguity.

In Summary

This chapter showed how Vesta system description language is used in practice to
construct substantial systems, using the example of a simplified email system. It
described a particular way to arrange the code of substantial systems to facilitate
incremental development by individuals within a larger organizational context. The
presentation emphasized the overall structure of the system models written by devel
opers and touched on the facilities provided by the standard environment. However,
the discussion stopped short of a look inside the C/C++ bridge and, in particular, the
internals of the bridge's program function. The reader who seeks to understand the
Vesta system at this level of fine detail can study the actual bridge code on the Vesta
public web site (see Appendix B). In addition, Section 8.7 presents call graphs for
the construction of an actual system. which give a more execution-oriented view of
the bridge models discussed in this chapter.



Part III

Inside Vesta



The next three chapters explore aspects of Vesta's implementation. These chapters
emphasize novel or unusual aspects instead of giving a comprehensive survey of the
entire implementation. The treatment assumes considerable familiarity with standard
techniques for constructing compilers and operating systems. The reader who wishes
only to understand how Vesta appears to its users can skip this material.

Chapter 7 begins by presenting specialized features of the repository that help
to implement the exhaustive dependency tracking required for tool encapsulation
during Vesta evaluations. It then examines the repository implementation, including
the details of replication. Chapter 8 discusses how the Vesta evaluator and function
cache server implement fine-grained dependency analysis and caching, which form
the core of Vesta's incremental building machinery. Chapter 9 concludes Part III by
describing how the weeder supports largely automated management of derived file
storage.
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Inside the Repository

Chapter 4 described the functionality of the Vesta repository as seen by a developer.
This chapter examines additional features of the repository, including those used by
other components of the Vesta system, and the way in which notable aspects of the
repository functionality are implemented.

7.1 Support for Evaluation and Caching

The interactions of the Vesta evaluator, function cache, and repository are substantial
and occasionally subtle. This makes it difficult to describe anyone of them without
first describing the others. But since an order is unavoidable, we begin by examining
some of the features of the repository that exist especially for the use of the other two
subsystems, thenreturn in the nextchapter to consider how those systems use these
features and provide others required by the repository. The reader seeking to follow
this thread may skip to Chapter 8 after reading Section 7.1.

7.1.1 Derived Files and Shortids

Like most file systems, the Vesta repository uses a machine-sensible identifier to
name the files it stores, and it provides a separate data structure (directories) to map
human-sensible names to these machine-sensible identifiers. The latter are 32-bit
integer values called shortids, and the files they name are ordinary disk files called
shortid files. The repository provides an interface for allocating a new shortid and
creating a corresponding file, and for opening an existing file given its shortid.

From the repository's perspective, a source file is simply a shortid file that has
a name in the repository's source name space. That is, the shortid is stored in the
repository's human- to machine-sensible name mapping. A derivedfile, on the other
hand, is a shortid file that the repository is storing on behalf of the Vesta function
cache.

Running the Vesta evaluator on a model creates derived files such as object mod
ules, libraries, and executable programs. These files do not acquire permanent names



94 7 Inside the Repository

within the repository's name space but do have temporary human-sensible names
within the context of the evaluation in which they are created, that is, within a run
ning program written in Vesta's system description language. This means that names
(identifiers in SDL) may be bound to shortids by the Vesta evaluator, and embed
ded in bindings or more complicated SDL structures. Most significantly, the Vesta
evaluator may, and typically does, write function cache entries that refer to derived
files via their shortids. Thus, both ongoing evaluations and persistent function cache
entries refer to derived files by shortid.

Because shortids appear in data structures (such as the function cache) that the
repository does not manage, it cannot unilaterally delete files. Instead, the Vesta sys
tem as a whole adopts an approach called "weeding" (similar to garbage collection)
for managing shortid files. (We touched briefly on the operation of the weeder in
Section 3.1.3.) When the Vesta weeder deletes a function cache entry, some or all of
the deriveds referenced in the entry's result value may become garbage (that is, no
cache entries referencing them remain). As the weeder scans the cache using a mark
and-sweep collection algorithm, it assembles a complete list of shortids that are ref
erenced by cache entries being retained. The weeder passes this list and a timestamp
to the repository, which augments this list with the shortids it discovers by walking
over its own directory tree. The repository can then delete any shortid file that is not
on the augmented list and whose contents predate the specified timestamp.'

It may seem surprising that sources and deriveds are pooled together by the repos
itory and both are garbage collected during the same weeding process. Why not treat
them separately? The main reason is that a source can become a derived, and vice
versa. A source becomes a derived (in the sense that a shortid is written into a cache
entry) if a function returns a source as part of its result. This happens quite often.
Later, the original source's name might be deleted (rebound to a ghost), but the
shortid file in which that source was stored will be kept as long as a cache entry
still refers to it. A derived becomes a source if an RPC client calls the repository and
asks for the derived to be inserted (linked) into a source directory.

The repository also assigns a shortid to every distinct immutable directory. (Two
immutable directories that are identical except for their name and parent directory
are not considered distinct; they usually have the same shortid.) This feature lets
the evaluator and function cache refer to a whole tree of sources with one shortid,
allowing a more compact, coarse-grained representation of dependencies on files in
the tree. However, this optimization adds another step to the repository's garbage
collection algorithm, since for each directory shortid that the weeder asks it to keep,
the repository must walk the subtree rooted at the corresponding directory and keep
the subdirectories and files there as well.

7.1.2 Evaluator Directories and Volatile Directories

The repository provides two special kinds of directories (called temporary build
directories in Section 3.1.2) specifically for use by the .zun.t.oo l.primitive (Sec-

1 The timestamp used is the time just before the start of weeding. This ensures that deriveds
created by evaluations running in parallel with the.weeder are not deleted. See Chapter 9.
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tion 5.2.3). Recall that _run_tool executes tools (compilers, linkers, etc.) in an en
vironment in which all their file references are intercepted by the Vesta system, which
then supplies appropriate, immutable contents. Evaluator directories and volatile di
rectories implement this restricted file name space.

An evaluator directory serves two purposes at once. It forces file references from
a tool to obtain their data from the environment of the Vesta evaluation that invoked
the tool, and it enables the evaluator to maintain a record of the specific values on
which the tool invocation depends. The former ensures that only immutable files are
accessed, while the latter supports the automatic dependency detection that is at the
heart of incremental building.

An evaluator directory is an immutable directory whose contents are defined by
a binding in the value space of an in-progress Vesta evaluation. A binding, being a
name-to-value mapping, can naturally represent a file system directory. If the name
NI in the binding B refers to a value VI of type Text, then the name NI in the cor
responding evaluator directory D refers to a file with VI as its contents. If the name
N2 in the binding B refers to a nested binding V2, then the name N2 in the directory
D refers to a subdirectory whose contents are defined by V2, recursively.f An evalu
ator directory is immutable because it is created and used only while an evaluation
is within a call to the language's .zun.t.oo l primitive, during which time B cannot
change.

How is an evaluator directory actually used during a _run_tool invocation?
When the repository receives an NFS request to list an evaluator directory or look up
a name in it, the repository passes the request through to the evaluator via an RPC.
When the evaluator receives such a request, it records a dependency on the given
name and returns its value (see Section 8.4.2). The value can be either a shortid,
representing a file, or a handle for another binding, representing another evaluator
directory. The repository then generates the appropriate NFS reply. The repository
keeps a cache for each evaluator directory to avoid repeated RPCs for the same name.
The immutability and short lifetime of evaluator directories make this cache straight
forward.

Evaluator directories hold files (SDL text values) that exist before _run_too1 is
invoked. An external tool also typically creates new files or makes changes to existing
ones. Such changes cannot be made directly to the binding backing the corresponding
evaluator directory, since that would amount to a side-effect. Instead, the repository
records all such changes in volatile directories. At the completion of the .zun.t.oo l
call that launched the tool, the changes recorded in the volatile directory are reported
back to the caller as part of the _run_tool result. (For details, see Section A.3.4.8.)

A volatile directory consists of a pointer to an evaluator directory, called its base,
and a list of changes. As in a mutable directory, one can create new files or (with
copy-on-write) edit existing files in a volatile directory.3

2 Unix experts will recognize the need to include 110 devices, especially / dev/null, in an
evaluator directory, and the repository does indeed provide a way to do that.

3 See Section 7.2.3 for restrictions.
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To summarize, here is how the evaluator, repository, and runtool server interact
to run a tool in an encapsulated naming environment.

• An evaluation invokes the .run.too.l primitive with the arguments described
in Section 5.2.3, including the binding that is to supply the initial contents of the
tool's root directory.

• The evaluator calls the repository to set up two directories: an evaluator directory
backed by the binding and a volatile directory based on the evaluator directory.

• The evaluator invokes the runtool server, which starts the tool with the root di
rectory name" /" rebound to the new volatile directory. (On Unix, this step uses
the chroot system call.)

• Whenever the tool attempts to look up a name in a directory, the volatile directory
first consults its list of changes to see if the file was created or modified previ
ouslyby the tool. If not, it delegates the operation to its base evaluator directory,
which in tum passes the request to the evaluator to be recorded as a dependency
(as described earlier). Similar delegation is performed when listing a directory's
contents.

• After the tool finishes running, the evaluator calls the repository to find out what
changes the tool made to its volatile directory and uses this information to con
struct a result binding. If the tool created or edited any files, their new shortids
are returned as part of the change list, and they become deriveds.
The evaluator deletes the directories it created in the repository, freeing the re
sources they were consuming.

It should be pointed out that volatile directories are so named not for any fun
damental reason, but merely because the repository implementation does not record
them on disk and they are lost if the repository crashes and restarts. Any shortid files
created are of course recorded on disk; they are later garbage-collected, if necessary,
through weeding. This volatility is tolerable because a volatile directory needs to ex
ist only as long as it takes a single tool to run, so the only negative effect is that on
the rare occasions when the repository server crashes, any in-progress evaluations
fail. In compensation, the task of reclaiming resources after a crash is simplified.

7.1.3 Fingerprints

The Vesta function cache employs special 128-bit checksums called fingerprints [10,
52] as compact abbreviations for values. Fingerprints are computed in such a way
that they are essentially unique. That is, the probability that two different values will
have equal fingerprints is vanishingly small. (See Section 8.2 for further details on the
use of fingerprints.) As a service to the function cache and evaluator, the repository
keeps fingerprints for certain kinds of files and directories and makes them available
though an RPC interface.

Every immutable directory and immutable file in the tree rooted at /ves ta has
a fingerprint, because an evaluation can refer to such files and directories as sources.
Ghosts, stubs, and appendable directories do not have fingerprints, because a suc
cessful evaluation can never refer to one. The repository also supplies fingerprints
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for files in volatile and evaluator directories, because an evaluation can produce and
cache such a file as a derived. Volatile and evaluator directories themselves do not re
quire fingerprints; their existence is ephemeral and the function cache never contains
a reference to one.

The implementation of fingerprints is conceptually straightforward but is com
plicated somewhat by performance considerations. As a result, Vesta uses several
different methods of fingerprinting files and directories, and characterizes files as
"small" or "large" for fingerprinting purposes. More on this distinction shortly.

Each large immutable file and each immutable directory has a fingerprint based
on the full hierarchical name under which it is first placed into the repository.
That fingerprint stays with the source as it acquires new names via the check
out/advance/check-in cycle. Fingerprinting based on the name provides the required
uniqueness semantics because the repository guarantees that a name is never reused
for a different source.

Each large new derived (that is, each large new file in a volatile directory) has a
fingerprint based on a unique identifier that is generated when the file is created. That
fingerprint is reported back to the evaluator, stored with any function cache entry that
points to the file, and supplied again to the repository if the file later appears as an
existing file in a new evaluator directory. Fingerprinting based on a unique identifier
provides the required semantics because the identifiers are never reused. It gives
better performance than fingerprinting the file contents because the identifiers are
much shorter than the average large file.

Each small file has a fingerprint computed from its contents. This method of
fingerprinting has some interesting consequences. For example, if a user "touches" a
source file in a working directory (that is, performs a write to the file that does not ac
tually change the contents), source fingerprinting based on a unique identifier would
cause the file to be recompiled and everything that depends on it to be rebuilt. With
fingerprinting based on contents, however, the file will be recognized as unchanged
and nothing will be rebuilt. Further, suppose a user edits the comments in a source
file but does not change the code. This always causes the file to be recompiled, but if
the compiler is fully deterministic, the recompilation will generate a derived object
file with exactly the same contents as the previous version. With derived fingerprints
based on contents, the new derived file will be recognized as identical to the old
one, and subsequent build steps that use the compilation output, such as a link step,
will not be executed again since they will get a hit in the Vesta function cache. (Un
fortunately, some C and c++ compilers insert timestamps into the object files they
produce, negating the benefits of fingerprinting these files by contents.)

Because these various types of fingerprinting give equally correct results, the
choice between them is based on performance. The threshold that distinguishes
"small" and "large" files is therefore dynamically configurable. By default, the
threshold is one megabyte; smaller files are fingerprinted by contents, larger ones
by unique identifier," Note that changing the size threshold between the fingerprint-

4 On the hardware described in Chapter 11, a file can be fingerprinted at roughly 1 MB/sec
(elapsed time).
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ing methods does not cause a correctness problem. The cache and evaluator require
only that two files or directories with different contents always have different finger
prints. It is not essential that two files or directories with the same contents always
have the same fingerprint, though it is advantageous that they do as often as possible,
since that will yield more function cache hits.

Although fingerprinting is chiefly intended to support the Vesta function cache,
it has benefits for optimizing the repository implementation as well. The repository
includes an internal table that allows any file or directory to be looked up by its
fingerprint. This table has two important uses. First, if a user adds a small file to
the repository (via vadvance) that is already present with the same contents but a
different name, the repository looks up the new file's fingerprint in the table, finds
that a copy is already present, and arranges for the two files to share storage, thus
saving disk space. Second, the replicator (Sections 4.3.3) uses the table to avoid
making redundant copies when copying files and directories from one repository to
another. The table is not kept on disk, as the repository server is able to rebuild it
from other data structures when it starts up.

7.2 Inside the Repository Implementation

This section explores selected aspects of the repository implementation, which will
be of interest chiefly to readers familiar with file system and file server internals.

7.2.1 Directory Implementation

The repository keeps all of its directory structure in virtual memory. This includes
all five directory types described previously (appendable, immutable, mutable, eval
uator, and volatile), plus stubs and ghosts. File data is of course stored separately in
shortid files; directory entries for these files point to them by shortid.

Every directory is implemented as a base pointer (possibly null) to another di
rectory plus a list of changes. Conceptually, the contents of a directory are the con
tents of the directory referenced by the base pointer (recursively), augmented and
potentially overridden by the change list. This representation is convenient in many
commonly occurring situations. For example:

• When a package is checked out, the repository creates a mutable directory whose
initial contents are the same as a given immutable directory. This can be done
very quickly, since the mutable directory is represented with a base pointer to the
immutable directory and an initially empty change list.
Similarly, when the runtool server is creating a volatile directory to serve as a
tool's working directory, it represents it with a base pointer to an evaluator direc
tory that defines the initial contents plus an empty change list.

• A package version and its successor often have many files in common, since gen
erally only a few files change with each revision. Thus, the later version is com-
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pactly represented as a pointer to the earlier one together with a list of changes
relative to it.5

As a result of this representation, the externally visible directory tree is actually
stored as a directed acyclic graph, saving a great deal of memory. It is worth not
ing that, internally, directories do not have parent links. This saves additional space
in the common case that a package version and its successor share a subdirectory
since, without parent links, there need only be a single copy.

The repository packs its in-memory structure tightly to keep memory consump
tion down. The goal is to keep the structure small enough to stay resident in physical
memory at all times, so that directory access will not be slowed by paging. To this
end, references between parts of the structure use 32-bit array indices instead of
pointers (which are 64 bits wide on Alpha, the architecture on which Vesta was first
implemented), and record fields are arbitrarily byte-aligned. Section 11.3.2 quantifies
the effectiveness of this compaction.

To keep the directory data stable, the repository uses a simple logging and check
pointing technique [7]. Whenever a repository client requests an operation that alters
the directory data structure, the server appends a record of the operation's name and
parameters to a log file and forces it to disk before modifying the in-memory data
and returning to the client. If the repository crashes, upon restart it replays the log to
restore its state. (Operations on volatile directories are not logged.) To make recovery
faster, the repository occasionally makes a checkpoint by dumping its state to a file.
The next recovery then begins from the most recently committed checkpoint.

The checkpoint code incorporates a special-purpose compacting garbage collec
tor, so checkpointing has the useful side-effect of reducing memory fragmentation.
The algorithm is designed for minimal memory usage. First, it writes the compacted
checkpoint directly to a file, not to a second ("to-space") memory region as an ordi
nary copying garbage collector would. Second, when it copies an object, it puts the
forwarding pointer to the object's new address (which is needed to keep the object
from being copied more than once if there are many pointers to it) into the first few
bytes of the object's old location. Thus the algorithm is destructive, necessitating an
immediate recovery from the checkpoint file when it is complete.P This recovery is
transparent to the rest of the system, an effect achieved by including even volatile
directory structures in the checkpoint. The volatile structures are written at the end
of the checkpoint and are ignored when recovering from a real crash.

This log-and-checkpoint machinery is sufficiently general-purpose that the func
tion cache server uses it as well. The logging mechanism permits an arbitrary number
of bytes to be appended atomically, even if the underlying file system and disk con
troller hardware reorder writes to disk, by including a version number in every disk
block. The log packs data tightly into disk blocks, yet ensures that committed data
is not lost even if a hardware failure corrupts the block currently being written. It

5 In principle, this kind of sharing can lead to long base-pointer chains, but this hasn't been
a practical problem. Section 11.3.1 shows that lookup performance is adequate.

6 If the repository server crashes while writing a checkpoint, it will recover from the most
recent successful checkpoint and the succeeding operation log.
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achieves this by alternately writing two different blocks when adding more data at
the tail of the log, like the ping-pong algorithm [22] but avoiding the occasional need
to perform the last write twice. The facility also supports fuzzy checkpointing; that
is, making a checkpoint in parallel with appending more data. The repository server
does not require this feature, but the cache server uses it to enable weeding to proceed
in parallel with normal operation.

7.2.2 Shortids and Files

The repository server stores shortid files in an ordinary (Unix) file system provided
by the underlying operating system, under a fixed directory established when Vesta is
installed.' Each file's name is derived from its 32-bit shortid. For example, a file with
shortid Ox12345678 would have a name like /ves ta - sid/ 123/456/78. Inter
mediate directories such as /ves ta - sid/ 123 and /ves ta - sid/ 12 3/456 are
created only when needed and are deleted when they become empty.P Vesta users
never see these filenames. The / ves ta - sid directory and all files and directories
beneath it have their access permissions set so as to be directly accessible only to
the repository server, the function cache server, and the evaluator. Immutable shortid
files (those corresponding to immutable source files or to deriveds that have been
completely written and are referenced by cache entries) have their write permission
bits turned off.

Why do processes other than the repository server itself have direct access to the
/vesta-sid directory tree? This is a performance consideration. A process that
knows a file's shortid can read or write it directly though the underlying file system,
thereby avoiding the overhead of passing data through the repository NFS interface
while offloading work from the repository server. A further optimization permits
processes to create shortid files without contacting the repository for each one. The
repository provides an RPC interface that allocates new shortids in blocks of 256.
The blocks have leases; that is, ownership of a block times out if it is not periodically
renewed, enabling the repository to reclaim blocks allocated to processes that have
crashed. A layer of library code provided by the repository implementation hides the
complexity of block allocation and lease renewal from client programs.

This efficient route for accessing shortid files unfortunately sees little use. Nearly
all accesses to shortid files are through the repository NFS interface. Users of course
access sources through NFS. Encapsulated tools read existing sources and deriveds,
and write new deriveds, using the repository's NFS interface to volatile directories.

7 Embedding in a file system is not conceptually necessary - implementing on a raw disk
makes sense too. While the latter might have enabled some modest performance gains, it
would have been considerably more effort and would have made installation and configu
ration more complicated.

8 There is no inherent reason for the directory substructure. In principle, a single flat direc
tory of shortids would work. However, in practice, the underlying file system performance
degrades with the size of the directory, so some scalable scheme for using multiple direc
tories to hold the shortid files is necessary. The one described here is simple to implement
and achieves satisfactory results in practice.
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Only a few accesses by the evaluator itself and by the weeder bypass the repository
NFS server. In hindsight it would have been simpler to omit this access path, instead
making the /ves ta - sid directory tree a private data structure that is hidden from
all processes but the repository server itself.

To conserve memory, the repository server avoids keeping any sort of in-memory
structure indexed by shortid. It keeps a record only of which 256-shortid blocks are
currently leased. When some process holds a lease on a block, that process maintains
a bitmap of unused shortids in the block. The initial value for this bitmap is computed
when the block is allocated, by looking at the /vesta-sid directory tree and see
ing which shortids in the block are currently bound to files. When allocating new
blocks, the repository tries to choose empty ones in order to maximize the value of
the block to its client, but does not guarantee to do so every time.

The repository does need to keep an index that maps from immutable directory
shortids to the actual directory structure in memory. The index is stored as a hash
table in memory. The index is infrequently used, so there should be no serious per
formance problem if it falls out of the repository's working set and needs to be paged
back in from disk when used. It would have been more attractive to eliminate this
index by invertibly computing a directory's shortid from its memory address, but
this was impractical because the repository's checkpointing machinery moves direc
tories to different addresses. At any rate, the index does not take up much space. See
Section 11.3.2.

7.2.3 Longids

To operate as an NFS server [49,54], the repository must assign a 32-byte NFS file
handle to every file and directory it stores, and it must be able to look up a file or
directory by its handle. For proper NFS semantics, the meaning of a handle must
remain stable across repository crashes and restarts, and a handle for a deleted ob
ject must not be reused (at least not soon). To keep from using too much memory,
the repository must avoid having a large table that maps from handles to memory
addresses, yet it cannot use memory addresses directly as handles because check
pointing moves directories to different addresses.

Another problem the repository faces is how to implement the parent links in a
Unix-like directory tree when the internal representation does not store such links. As
noted in Section 7.2.1, several externally visible and apparently distinct directories
with different parents may share the same internal representation.

The repository solves both these problems with a single mechanism, the longid. A
longid is a 32-byte value that encodes the path through the externally visible directory
tree that was used to reach an object. Each component of the pathname is represented
as an index number. The low-order bit of this index number indicates whether the
entry is in the mutable change list of the directory or in the immutable base, while the
other bits give the entry number within the indicated list. Index number 0 is reserved
for use as a pathname terminator. The index numbers are packed into the longid using
a variable-width encoding in which the low-order seven bits of each byte carry data
and the eighth (high-order) bit, if set, indicates that more bytes follow. Thus small
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index numbers, which are common, take up less space in the encoding, leaving room
for more pathname components. If the encoded longid needs fewer than 32 bytes,
the remainder is filled with pathname-terminating zeroes.

Longids have the major properties necessary to implement the NFS file handle
semantics. Every object in the externally visible directory tree has its own longid,
which remains stable across repository restarts. Longids are not reused, because di
rectory entries are not reused or deleted." The repository looks up the referent of a
longid by traversing the directory tree much as if it were looking up the correspond
ing name. This traversal is fast because the entire tree is kept in memory. Given an
object's longid, one can determine its parent's longid simply by truncating the final
component.

Longids do not quite provide a perfect implementation of the expected NFS se
mantics, but the repository is able to paper over the difference effectively. In partic
ular, if an object is renamed, its NFS handle is expected to remain the same. In the
repository, an object that is renamed gets a new longid, but the repository replaces
its old directory entry with a forwarding pointer to the new one so that its old longid
can continue to work also. The old longid stops working if the object's old parent di
rectory is deleted, however. Also, the existence of two handles for the same mutable
file will cause an NFS cache coherence problem in the extremely unlikely event that
the same client has the file open twice, once under the old handle from before it was
renamed and once under the new name and new handle. Even though both opens are
done by the same client and thus would normally be coherent, in this case the client
sees two different handles, so it will cache the file twice and fail to keep the two
copies coherent. In practice, this situation does not arise.

However, longids as described so far have one major drawback. When the evalu
ator creates a new volatile directory tree to provide an encapsulated environment for
a tool, all the files and directories in the tree acquire new, unique longids. But when
the evaluator runs several tools in succession in the course of a build, many shortid
files are accessed repeatedly. For example, standard C header files are often read by
many compilations, and object files that are written by a compilation are normally
read by a subsequent link. For good performance, tools should get NFS client cache
hits when they access files that other tools have recently accessed, but this is impos
sible when the same file is seen as having a different file handle each time a new tool
is run.

To solve this problem, files in volatile directories are usually given a shortid
based longid, a variant of longid that encodes the file's shortid and fingerprint instead
of its pathname. Thus, the same shortid file has the same file handle every time any
tool encounters it, and the tools see good NFS cache performance.

At first glance, it might appear that shortid-based longids are unconditionally
superior. However, shortid-based longids have two drawbacks that keep them from
universally displacing pathname-based longids.

9 In directory types that permit deletion, the repository keeps an invisible placeholder for
each deleted entry to prevent its index number from being reused.
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First, shortid-based longids sacrifice a level of indirection, making copy-on-write
(Section 7.2.4) impossible. That is, with a pathname-based longid, there are two lev
els of indirection; the longid specifies a path through the directory tree, at the end
of which is a shortid. Therefore, copy-on-write is achieved simply by changing the
shortid in the directory, in particular, replacing an immutable shortid file with a new,
mutable copy of the same file with a different shortid. But a shortid-based longid
specifies the shortid directly, so its meaning cannot be changed this way. This makes
shortid-based longids unsuitable for files in mutable directories, so the repository
does not use them there. It also means that tools cannot be allowed to modify exist
ing files in volatile directories because that also requires copy-on-write. This is an
inconsequential limitation for most tools, but to accommodate a few tools that need
to be able to modify existing files, Vesta makes this functionality selectable by a
boolean parameter to the evaluator's _run_tool primitive, which is in turn passed
to the repository's volatile directory creation primitive.

Second, shortid-based longids sacrifice the ability to find a source object's parent
directory. This makes shortid-based longids unsuitable for directories. It also means
that a file's access control cannot be inherited from its parent directory, which makes
these longids poorly suited for files in immutable and appendable directories. (Recall
Sections 4.4.1 and 4.4.2.) One can imagine living with the access control limitation
by making all immutable files world-readable and relying on directory access con
trols to protect them when necessary, but this option would be unattractive.

Fortunately, pathname-based longids provide adequate NFS cache performance
in mutable, immutable, and appendable directories because such directories are not
created and deleted frequently.

7.2.4 Copy-on-Write

The repository uses copy-on-write to save disk space. The basic technique is evi
dent from the representation of directories as a base pointer plus a list of changes.
For example, in the case of a vcheckout operation, the repository makes a mutable
directory based on an immutable one, with an empty change list. Thus, all of the
files initially in the mutable directory are actually immutable. When a user tries to
write one of these files, the repository copies the data from the immutable file to a
new mutable file with a new shortid, adds an entry to the change list of the mutable
directory to point to it, and writes the user's data to the new file instead.

Pathname-based longids add an extra complication here. In the situation just de
scribed, the new entry has a different index number than the old one, so although the
new copy of the file has the same name as the old one, it has a different longid! The
repository fixes this problem by setting a flag in the new directory entry to indicate
that the old longid should continue to be used, not the new one. When the repository
looks up a name to find a longid, if it encounters an entry with this flag set, it looks
for another entry containing the same name in the directory's immutable base and
uses that entry's index number in the longid. When the repository looks up an object
by longid, each time it encounters an index number that points into the immutable
base of a mutable directory, it extracts the name from the directory entry found and



104 7 Inside the Repository

checks to see if there is a flagged entry in the change list with the same name. This
solution uses minimal space but does slow down name and longid lookup somewhat.

The repository also implements copy-on-write for directories. A new mutable
directory may be based on an immutable directory with immutable subdirectories.
If a user tries to edit a file or make any other change in such a subdirectory, the
repository copies the old immutable subdirectory to a new mutable one, and adds an
entry to the mutable parent directory to point to it. In this case, of course, the copying
itself is optimized by creating the copy as a new directory based on the old one with
an initially empty list of changes. If the user's first edit is several levels deep in the
directory structure, the copying process is carried out recursively.

7.2.5 NFS Interface

The repository NFS server runs entirely in user space. It is simply a software layer
on top of the basic repository functionality which, as we have seen, is layered on top
of an ordinary file system. The layered, user-space approach makes for simpler im
plementation and debugging than a kernel-resident approach, but it incurs additional
overhead in data copying and context switching. Section 11.3 quantifies repository
performance and shows that although the repository provides poorer file system per
formance than a standard kernel-resident NFS server, it is still fully adequate for
Vesta's overall needs.

The NFS server implementation uses a modified version of Sun's ONC (Open
Network Computing) RPC library [56,57]. The original library was designed for use
only in single-threaded programs; in particular, its server-side duplicate suppression
machinery assumes there can be only one outstanding request at a time. But because
NFS is built on a simple request/response protocol with no data streaming, NFS
implementations generally perform badly unless many NFS reads and/or writes can
be in flight simultaneously between the same client and server in separate threads.
Therefore, Vesta includes a custom version of the duplicate suppression machinery
that enables multithreading and removes this performance bottleneck.

The repository cheats slightly in its implementation of NFS version 2 semantics
for mutable files. The NFS2 protocol requires a server to make sure that a write is
stable (either on disk or in nonvolatile memory) before acknowledging it to the client.
Otherwise, if the server should crash and restart with some data acknowledged but
not stable, the client's cache would become incoherent with the server's state and
the data would never be written. The repository does not implement these semantics.
Instead, it passes writes on mutable files to the underlying operating system before
acknowledging them to the client, but it does not wait for the operating system to
make them stable. Therefore, if the machine that the repository server is running on
(not just the repository process itself) crashes while a client is actively writing to it,
a write that the client believes has been done may actually be lost. This case is rare,
and it typically should do nothing worse than cause some user who is working at the
time of the crash to lose a few edits.

Still, it would still be preferable to resolve this issue in the future. The best fix
would be to upgrade the repository's NFS implementation to NFS version 3 [12],
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which does not require writes to be stable before they are acknowledged; however,
this protocol is much more complex than NFS version 2. A simple fix within the
NFS2 framework would be to make a Unix f sync system call to force each write
to be stable before acknowledging it back to the client, but this change would signif
icantly harm the repository's NFS write performance.

The repository does force all writes to a newly created immutable file to be stable
before acknowledging creation of the file to the requesting client or making it avail
able to other clients for use. It also forces all writes to a derived that is created by a
_run_tool call to be stable before the evaluator can ask the cache server to write a
cache entry referencing it. Thus, since only immutable files and deriveds participate
in replication and builds, the repository's loose NFS2 implementation cannot cause
disagreement between replicas or inconsistent builds.

7.2.6 RPC Interfaces

In addition to the NFS interface, the repository has two RPC interfaces, one for
access to shortid files and one for access to the directory structure. These include
the operations used by the repository tools to optimize common development cycle
operations, as described in Chapter 4. For example, vcheckout uses the latter of these
interfaces to create a mutable directory based on an immutable one, as described
above. Similarly, vadvance uses the same interface to efficiently create an immutable
directory from the mutable working directory by copying the base pointer and the
change list, then marking each entry in the change list as immutable.

The significant repository features available through these interfaces have already
been discussed. These interfaces are invoked using the SRPC (simple RPC) package
described briefly in Section 11.6.

7.3 Implementing Replication

Section 4.3 described the repository's replication facility from the viewpoint of a
developer using Vesta. Two aspects of the replication implementation deserve closer
attention: the way in which agreement between repositories is preserved and the
details of attribute propagation. First, however, we must elaborate on the concept of
mastership.

7.3.1 Mastership

Section 4.3.1 briefly introduced mastership, explaining its use for appendable direc
tories and stubs. However, the notion applies to every source object in a Vesta repos
itory, including files, directories, stubs, and ghosts. Every such object has a boolean
master flag that, when true, identifies a master copy. The agreement invariant, to be
formalized in the next section, specifies that there is at most one master copy of each
object; that is, an object's master flag is true in at most one of the replicas in which
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it appears. The setting of the master flag affects the operations that are permitted on
an object.

For appendable directories, the master copy is the synchronization point for the
addition of new names. Arbitrary new names can be freely added to a master ap
pendable directory, but new names can be added to a non-master appendable direc
tory only by copying them from another repository. When an appendable directory
is mastered at a particular repository, a complete copy of the subtree rooted at that
directory need not be stored in that repository. However, the master repository needs
to keep a complete record of bound names to prevent clashes when new names are
inserted. To do so it uses stubs and ghosts.

A master stub is a placeholder for data that has yet to be created, and a non
master stub is a placeholder for data that may exist in another repository but is not
currently replicated locally. A master stub can be freely replaced with a freshly cre
ated master source of any object type, but a non-master stub can be replaced only
with a non-master source created by copying from another repository. The reserva
tion stubs described in Section 4.2 are master stubs.

Both master and non-master ghosts indicate that a previously existing source has
been deleted. Either type of ghost may be replaced by a copy of the source taken from
another replica, with no change in mastership, except that a master ghost cannot be
changed to a master appendable directory or master stub. The replicator prohibits
the former because it cannot guarantee to restore all the names that were bound in
the directory at the time it was deleted. The replicator prohibits the latter because the
master stub could in tum be replaced by an arbitrary object different from the name's
original, pre-ghost value, thereby violating Vesta's immutability guarantee.l"

For immutable directories and files, the "at most one master" requirement of
the agreement invariant still applies, but mastership has no other enforced meaning.
Because an immutable directory can contain only immutable subdirectories and files,
never stubs or ghosts, all replicas (whether master or non-master) are necessarily
identical. Thus, in each repository, every tree rooted at an immutable directory is
either completely present or completely absent. In terms of packages and versions, if
any file or directory from a package version is present in a given repository, then that
entire version must be present there. Mastership is meaningful for immutable objects
only by convention: the master copy is considered the "main" copy, which should
not be deleted or replaced with a ghost without thinking twice.

7.3.2 Agreement

We can now define Vesta repository agreement formally. Recall the informal defi
nition of agreement (Section 4.3.1): no name is bound to different values in differ
ent repositories. Thus, agreement is a global predicate on the combined state of all
repositories. A natural way to formalize this is first to define a pairwise agreement

10 The repository design could have been simplified slightly by eliminating both master and
non-master ghosts and using non-master stubs for deleted items instead, at the cost of losing
information about whether a source was explicitly deleted or is simply not present locally.
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predicate, then to assert that global agreement exists when the pairwise predicate
holds for all pairs of repositories.

In the definitions below, let A and B be Vesta source objects, let A.master denote
the master flag of A, let A.repos denote the repository where A is stored, and if A
is a directory, let A.names denote the list of names that are bound in it. Let A ~ B
(read "A agrees with B") denote pairwise agreement. Then A ~ B if and only if the
following recursively defined conditions hold:

1. A.master /\B.master ~ A.repos == B.repos and
2. At least one of the following holds:

a) A and B are files with identical contents.
b) A and B are immutable directories where

i. A.names == B.names, and
ii. Vn: n E A.names ~ Aln ~ Bin.

c) A and B are appendable directories where
i. Vn: n E A.names /\n E B.names ~ Aln ~ Bin,

ii. A.master~ B.names ~ A.names, and
iii. B.master ~ A.names ~ B.names.

d) A and B are both master stubs.
e) A or B (or both) is a non-master stub.
f) A or B (or both) is a ghost.

In addition, we say two repositories agree when their replicas of the root directory
/vesta agree.

Condition 1 effectively says that the same source is not mastered in more than
one repository (and that agreement is reflexive - a repository agrees with itself).
Condition 2d is also needed only for reflexivity. Conditions 2a and 2b require replicas
of immutable files and directories to be identical.

Conditions 2c and 2e make partial replication possible. By 2c, two appendable
directories can agree even if one or both have only a subset of the complete set of
names defined in the directory across all repositories. But the master replica has a
complete list of names; thus, the master can coordinate the creation of new names,
assuring that the same name is never bound in different replicas to sources that do
not agree. By 2e, two appendable directories can agree even if one has a non-master
stub where the other has some other object.

Conditions 2d-2f reflect the way stubs and ghosts are intended to be used, as
described in the previous section. A master stub agrees only with itself or with a
non-master stub, because a master stub represents a source that is to be checked in
later. If the master stub is still present, the actual source has not yet been checked in,
so it cannot exist in a different repository. A non-master stub, however, agrees with
anything. A ghost also agrees with anything, because an object can be deleted from
one repository but remain present in others.

Notice that the agreement relation is not transitive; pairwise agreement between
A and B and between Band C is not sufficient to guarantee agreement between A and
c. This nontransitivity is an unavoidable property of partial replication. Replicas are
considered to agree when their overlapping portions do not clash, but A and C may
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overlap and clash in a portion that does not overlap with B. For example, suppose
that /vesta/foo is mastered at repository A, and that /vesta/foo/bar is an
immutable directory in repository A, absent in repository B, and an immutable file in
repository C. Then A ~ Band B ~ C, but the directory at A clashes with the file at C,
so A does not agree with C.

7.3.3 Agreement-Preserving Primitives

Given the preceding definition of agreement, it is easy to establish initial agreement
among repositories, since a new repository that contains only an empty copy of the
root directory /ves ta agrees with every other repository. Thereafter, each repos
itory operation that alters the agreement-related state must preserve the agreement
invariant. For an operation that modifies only one repository A, it is sufficient to
show that for all repositories B, if A ~ B holds initially, then it still holds after the
operation. For an operation that modifies two repositories A and B, it is sufficient to
show that for all repositories C, if A ~ B /\ B ~ C /\ C ~ A holds initially, then it still
holds after the operation. (Due to the nontransitivity of agreement, all three terms in
the postcondition must be proved, and all three in the precondition must be given.)

The repository semantics and the agreement invariant have been carefully de
signed so that most operations that modify repository state can be safely carried out
by one repository acting alone, and no operation requires more that two repositories
to participate, while agreement is still preserved. Seven essential primitives underlie
all repository operations that can affect agreement-related state.

1. Create a new master appendable directory in /vesta, using a unique Internet
domain name.

2. Create a new child object of any immutable or appendable type in a master ap
pendable directory.

3. Replace a master stub with a new immutable object.
4. Replace any child of an appendable directory with a ghost that has the same

mastership status as the old child. 11

5. Copy any child into an appendable directory from another repository, possibly
replacing an existing ghost or non-master stub. If the original is an appendable
directory, the copy is an empty non-master appendable directory. If desired, its
children can be copied by further applications of the primitive. If the original is
immutable, however, it is copied in full, including all its descendants.

6. Create a non-master stub in an appendable directory, if another repository has
that name defined.

7. Transfer mastership on an object from one repository to another, at the same
time adding stubs to the new master for any missing children of the old master.
(This primitive is used by cross-repository check-out; see Section 4.3.4.)

11 There are alternative formulations of this functionality that are also safe, such as using a
non-master stub in place of a ghost, or completely removing the child if the parent is not
master.
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As an exercise, the reader may want to check that each of these operations preserves
the agreement invariant of the preceding section.

The repository implements these primitives using a series of simpler operations
that add and replace single objects. To achieve the necessary atomicity, the reposi
tory server uses a mechanism, already implemented to support other features, that
provides short atomic transactions on persistent storage within a single repository.
Primitives 1-4 run at a single repository; their implementation is straightforward
using the transaction mechanism.

Primitives 5 and 6 require consulting another repository, but a multi-site atomic
transaction is not required. It is sufficient to read the data from the source repository,
then atomically insert a copy into the destination. No lock on the source repository is
needed while reading the original, since it cannot change; at worst, it can be replaced
with a stub or ghost while the read is in progress, but this simply causes the primitive
to return an error without changing the destination.

As mentioned at the end of Section 7.1.3, the destination repository optimizes
the copying process in primitive 5 to avoid making redundant copies of objects, such
as multiple objects that have the same content but different names. Specifically, each
repository keeps an in-memory table in which each locally stored immutable file and
immutable directory tree can be looked up by its fingerprint. When an object is to
be copied, the destination repository first looks up its fingerprint in the table to find
whether a copy is already present. If so, the repository links the existing copy into
its name space instead of making another. In addition, if a directory being copied
is encoded in the source repository as a list of changes relative to a base directory
(Section 7.2.1) and the destination repository already has a copy of the base directory,
then the destination encodes the copy in the same way.

Primitive 7, mastership transfer, is the most complex. The implementation guar
antees that agreement between repositories is preserved, avoids blocking either
repository during the transfer protocol, minimizes the likelihood of a failure resulting
in neither repository being master, and keeps a location hint with each non-master
object for its associated master repository.

In barest outline, the implementation consists of two separate atomic operations.
First, the repository ceding mastership on an object makes a complete list of its chil
dren and turns off its master flag. Second, the repository acquiring mastership inserts
any missing children into its copy as non-master stubs and turns on the master flag.
The implementation also updates the master location hints and keeps a stable record
of in-progress transfers at both repositories, persistently retrying them until they are
complete. With this implementation, the agreement invariant cannot be violated, and
the object can be left without a master only if one repository crashes permanently or
the network link between the repositories is permanently severed while a transfer is
in progress.

In more detail, the implementation works as follows. Steps carried out by the
repository trying to acquire mastership are numbered starting with AI. Steps car
ried out by the repository ceding mastership are numbered starting with C1 and are
indented. Request!grant identifiers and master location hints are stored in mutable
attributes (Section 4.4.1).



110 7 Inside the Repository

A1. Check that the requesting user has the necessary access permissions and that the
current master repository can be reached over the network; quit if not.

A2. Choose a unique request identifier and record it on the local copy of the object.
A3. Ask the current master to cede mastership, supplying the request identifier.

Do steps C1-C4 atomically:
Cl. Check that the requesting user has the necessary access permissions; refuse

to cede mastership if not.
C2. Form a grant identifier. If the object is an appendable directory, do this by

appending a list of its children to the request identifier; otherwise use the
request identifier. Record it on the local copy of the object.

C3. Change the object's type from master to non-master, and record the new
master repository's location on it. This location is of course only a hint,
since mastership could move to yet another repository later.

C4. Return the grant identifier to the caller.
A4. If the current master refused to cede, erase the request identifier and quit.
A5. Atomically fill in any missing children listed in the grant identifier (creating

them as non-master stubs), change the object's type from non-master to master,
record this repository in the object's master location hint, and record the grant
identifier in place of the request identifier.

A6. Ask the old master to erase the grant identifier.
C5. Erase the grant identifier.

A7. Erase the grant identifier.

The repository that is trying to acquire mastership tries persistently to complete
these steps, even if it crashes and restarts during the transfer, until step A7 is finished.
Thus mastership will not be lost unless one of the repositories permanently fails (or
the network is permanently severed) between steps C4 and A5, and even in this case
there will be a record of the incomplete transfer in whichever repository continues
running.

7.3.4 Propagating Attributes

The definition of repository agreement includes nothing about mutable attributes;
two replicas of a source may agree but have entirely different attributes. Each repos
itory can change the attributes of both master and non-master sources, and there
is no requirement to propagate attribute changes to other repositories. However, in
many cases such propagation is desirable, so the repository includes a feature in the
attribute facility to support it.

Section 4.4.1 described attributes as a total function F from names to sets of
values, but this is only the user's view. At a lower level of abstraction, an object's
attributes are recorded as a history of state changes H, represented as a set of times
tamped tuples. Each of the four write operations on attributes (set, clear, add,
and remove) takes a timestamp argument, which can be any value but defaults to
the time at which the operation was requested. Applying one of these operations in
serts a new tuple into H consisting of the name of the operation and its arguments.
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F(H) is then computed whenever needed by starting with an empty mapping, sorting
H into timestamp order (with ties broken by taking the operation, name, and value
as secondary sort keys), and operating on the mapping as dictated by the resulting
sequence of operations.

In addition to the high-level operations that query F, there is also a low-level
operation to query H. This operation does not necessarily return H itself. Instead,
it returns a history K that is equivalent to H, in the following sense. Histories H
and K are equivalent if for any history L, F(H U L) == F(K U L). That is, K may as
well have been the real history, because one cannot tell the difference by observing
either the present state of F or its future states as more operations are applied. The
implementation does not store H itself, but stores an equivalent K that is generally
smaller. For example, if the same attribute is set twice in succession, only the second
operation is retained in K. K is represented as a list sorted in timestamp order, which
makes the time to compute F (K) or to insert a tuple in K with one of the four write
operations linear in the size of K.

The representation of attributes using histories provides a way to reconcile the
results of attribute operations performed independently on two replicas of the same
object in different repositories. If the history KA at repository A is propagated to
repository B, B can combine it with the history KB simply by forming H == KA UKB;
the new F(H) then gives a well-defined and reasonable final state for the object. This
technique is adapted from Grapevine [6].

To summarize: Vesta propagates attribute changes from one repository to another
by sending the timestamped change tuples of the source repository to the destination
repository, then forming the union with the second repository's change history.

In Summary

In this chapter we have examined several aspects of the repository's inner work
ings, chiefly those that present a significant implementation challenge or strongly
influence performance. We also considered the specifics of the replication algorithm,
focusing on the underlying machinery required to preserve its invariants with only
moderate complexity.

With this knowledge of the repository's internals, we can now look into the im
plementation of Vesta's most complicated and subtle components, those that support
incremental building.
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Incremental Building

Vesta builds systems by interpreting programs (system models) written in Vesta's
system description language. Most aspects of that interpretation are straightforward,
since the language is fairly spartan with no semantically complex constructs. How
ever, to achieve essential performance, Vesta implements incremental building. To
do this effectively and with maximum benefit for the developers of a large software
system presents a significant implementation challenge.

The core issues for incremental building are the accurate detection of fine-grained
dependencies and the maintenance of an efficient shared cache of SDL function eval
uations. In this chapter, we examine how the Vesta evaluator and function cache do
this, assisted by the repository (Section 7.1) and the weeder (Chapter 9).

8.1 Overview of Function Caching

Section 3.1.2 explained the basics of Vesta's function caching. When the evaluator
interprets a function invocation, it keeps track of every value on which the result
depends and records those dependencies with the result in the function cache. When
the evaluator is about to invoke a function, it first checks the cache to see if there is a
usable cache entry and if so, skips the function invocation and uses the cached result
instead.

When is it safe for the evaluator to reuse a cached result? Only when the evalu
ation context at the current call site agrees with those parts of the context on which
some previous call to the same function depended. It is, of course, essential not to
omit any dependencies, otherwise the use of the cached result would be unsound. 1

However, it is also important not to err by introducing overly coarse-grained depen
dencies, or the cache will be ineffective, sometimes failing to return a result when it
should: afalse miss.

1 Vesta's dependency recording and analysis does not make use of any specific knowledge
about the workings of the build tools; it is thus semantics-independent in the terminology
of Gunter [24].
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False misses arise because the cache has recorded an unnecessary dependency on
the calling context. False misses do not produce incorrect results, but they do create
inefficiency. In fact, a false cache miss can be quite costly because it can trigger a
cascade of subsequent cache misses. For example, if one source file is recompiled
unnecessarily, then all subsequent commands that use the resulting object file (e.g.,
building a library that contains the file and programs that use the library) may be
unnecessarily repeated as well, since a constituent object file will appear to have
changed. Hence, the Vesta evaluator works very hard to avoid false cache misses,
which means it attempts to record each function call's dependencies as precisely as
possible.

For example, consider the following simple function:

f(x, y, z) {

return (if x > 0 then y else z);

Because of the conditional expression, the arguments on which this function depends
vary dynamically from call to call. For example, in the call 1(1,2,3), the result de
pends only on the values of x and y; the value of zis irrelevant. Hence, the subsequent
invocation 1(1,2,7) should be able to use the cached result of calling 1(1,2,3), since
both calls supply identical values for x and y.

In this particular example, the observant reader will notice that the exact value
of x is also unimportant. What matters is simply whether or not x is positive. Hence,
to get the most effective caching, dependencies must be expressed as predicates on
values rather than the exact values themselves.

The problem of recording precise dependencies is further complicated by Vesta's
composite value types: lists and bindings. For example, consider a slight modification
to the previous example, in which the y argument is a binding:

f(x, y, z) {

return (if x > 0 then y/a else z);

In this case, the result of the call I( 1, [a == 2,b == 5],3) depends only on x and y/ a.
A subsequent call 1(1, [a == 2,b == 9],7) should produce a cache hit, but recording a
dependency on the entire binding y would cause the second call to get a false cache
miss. This example demonstrates that the dependencies calculated with respect to
composite values should be as fine-grained as possible.

From these two examples, we see that the Vesta evaluator faces two challenges
in dealing with dynamic, fine-grained dependencies. First, the evaluator needs algo
rithms to represent, compute, and propagate dependencies with sufficient precision
to minimize the costs of false misses. Second, the caching mechanism must work
effectively even though the dependencies of a function invocation, being dynami
cally determined, cannot be known when the cache is consulted at the moment the
function is called. The remainder of this chapter explores each of these difficulties in
more detail, beginning with the second.
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8.2 Caching and Dynamic Dependencies

To understand the problem introduced by dynamic dependencies, consider the pro
totypical case of caching a compilation. Assume that a compilation is invoked by a
function call like this:

compile (filename, options, .) ;

Here, compile is the name of a bridge function that uses the .zun.Loo I primitive
to invoke the C compiler, filename is the name of the file to compile, options is a
binding denoting the command-line options to be passed to the compiler, and" ." is
the current environment. (The normally implicit parameter" . " appears explicitly for
emphasis.)

The current environment " ." is a binding value that includes a representation
of a file system directory tree. This directory tree contains all the files necessary
to perform the compilation. As described in Section 5.2.2, SDL makes it easy to
construct and extend bindings, so a custom file name space can be constructed quite
cheaply for each build.

Figure 8.1 shows a sample environment. Two paths in " ." are special: root
and root/ . WD. As described in Chapter 3, external tools such as compilers and
linkers are run in an encapsulated environment in which all references to files are
trapped by the repository and serviced by the evaluator. To service a file request from
the repository, the evaluator looks up the file in the current environment. Absolute
pathnames are looked up in the root subtree, while relative pathnames are looked
up in the root/ . WD subtree.

I
root

.r>:
.WD usr

/ -, -: -.
defs.h hello.c include lib

/~ /~
stdio.h libc.a

Fig. 8.1. The file system directory trees of a sample environment.

Now consider the following invocation of the compile function:

compile (llhello.c ll
I [debug = II_gil] I .);

Let" ." be the binding shown in Figure 8.1. When invoked, this function returns the
singleton binding that maps the name "hello. 0" to the derived object file produced
by compiling the file bound to . /root/ . WD/hello. c.
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To cache the result of this call, the evaluator computes the fine-grained depen
dencies and discovers that the call depends on the definition of the compile function
itself, the values of the first two arguments, and the following parts of the environ
ment:

./root/usr/lib/cmplrs/cc

./root/.WD/hello.c

./root/usr/include/stdio.h

It would then seem straightforward to write a cache entry consisting of the function
(the compiler) and a set of pairs (name and value) representing the dependencies,
plus the result computed by the function call. The cache entry would be indexed in
the cache by applying a hash function to the sequence of dependency pairs.

Unfortunately, such a cache entry would be useless. For the evaluator to locate
this cache entry at the time of a subsequent call of the same function, it must com
pute a hash of the dependencies, but since these are determined dynamically, the
necessary information isn't available at the call site. That is, in order to perform the
cache lookup, the evaluator first must determine all the dependencies, which can be
determined only by evaluating the function, which renders the cache useless.

To see how to solve this chicken-and-egg problem, consider for a moment the
following obviously inefficient caching algorithm. Before performing a function call,
the evaluator exhaustively enumerates the cache entries and, for each one, compares
the value associated with each name in its dependency set with the value of the
corresponding name in the current execution environment. If it gets a match, then
the evaluator uses the result value from the matching cache entry instead of invoking
the function.

While this brute-force algorithm is obviously impractical, it contains the germ
of the idea needed to solve the dynamic dependency problem. Separate the depen
dencies into two groups, those that can be statically determined at the function invo
cation site and those that cannot. Call the former the primary key and the latter the
secondary key.2 Cache lookup then becomes a two-step process. The evaluator com
putes the primary key and hashes it to access the cache. This yields a small number
of candidate cache entries, each of which has its secondary key compared against the
call site environment for a possible match. By applying the brute-force algorithm to
a few entries only, it becomes efficient.

In reality, some additional modifications are necessary to make this two-step al
gorithm practical. These modifications add a bit of operational complexity in ex
change for reasonable performance.

To begin with, the evaluator does not store in cache entries the values associ
ated with dependencies, since these values may run to thousands or even millions of
bytes. Instead of storing the individual values, the evaluator substitutes for each one
its fingerprint. A fingerprint is a small, fixed-size hash of an arbitrary byte sequence.
Fingerprints come with a mathematical guarantee bounding the probability of a col
lision, so by choosing long enough fingerprints, the probability of a collision can be

2 This is a slight simplification. Section 8.4 examines more closely the precise way in which
the Vesta evaluator distinguishes primary and secondary dependencies.
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made vanishingly small.' [10,52] So, in effect, FP(a) == FP(b) ~ a == b; that is,
fingerprinting can be used to test equality of values.

Fingerprints have another attractive property that makes further space economies
possible. A fingerprint can be extended, either by a byte sequence or another fin
gerprint, producing a new fingerprint with the same probabilistic guarantee. We
write extension with the non-commutative operator EB, e.g.,!p3 ==!Pi EB bytes and
!P3 ==!Pi EB!P2· The latter version is particularly relevant for cache key computa-
tions.

The primary key (PK) of a cache entry is formed by combining the fingerprints
of the primary dependency values, using EB. Each secondary dependency consists of
a name and the fingerprint of the corresponding value. Together, these secondary de
pendency names and fingerprints form the cache entry's secondary key (SK). Overall,
then, a cache entry is a triple of the following form:

( primary-key, secondary-key, result-value)

Here, the primary key is a single fingerprint, the secondary key is a set of (name,
fingerprint) pairs, and the result value is the function's full result value, suitable for
use by the evaluator in the event of a cache hit.

Figure 8.2 shows the primary and secondary keys computed for the example
compilation above. First, the fingerprint Qof the compile function itself and the fin
gerprints Rand S of the first two function arguments are computed. These fingerprints
are then combined to form a new fingerprint A, the primary key. As the function is
evaluated, three references to " ." are noted. Their names and the fingerprints B, C,
and D of their corresponding values are recorded as secondary dependencies. The
cache entry formed for this function evaluation is a triple consisting of the primary
key, secondary dependency names and fingerprints, and the result value of the eval
uation.

It is common for multiple cache entries to have the same primary key. In particu
lar, this occurs whenever a source file is edited and recompiled. Figure 8.3 shows an
example. In that figure, the two columns of fingerprints on the right denote two dif
ferent cache entries. Both cache entries correspond to the compilation of a file named
"hello. c'' with the same compilation switches, so both entries have the same pri
mary key A. However, between the two compilations, the source file "hello. c"
has been edited, so the fingerprint for the corresponding secondary dependency has
changed from C to E.4 Since the secondary dependencies for the two evaluations are
different, two different entries are stored in the cache.

An important consequence of using dynamic fine-grained dependencies is that
the set of secondary dependency names may differ from one cache entry to the next,

3 Vesta uses 128-bit fingerprints. Based on an overall system size of 20 million source lines
(see page 30) and some conservative estimates about the number of versions of each source
file, the probability of a collision occurring over the expected lifetime of the Vesta system
is much less than 2-42.

4 Of course, hello. c hasn't really been "edited", since Vesta source files are immutable.
More precisely, the name he110 . c is now bound to a different version of the source file
than was the case when the initial cache entry was constructed.
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compile ("hello.c", [debug = "-g"], .);

------ --- ---,
I ./root/usr/lib/cmplrs/cc (][) I

SK I ./root/.WD/hello.c ~

I .:!r..::o:!u:.r/~nc::u~/~t~o:.:' _ ~_~

Fig. 8.2. The primary key (PK) and secondary key (SK) of a single cache entry.

Entries

o
Primary Key (PK)

{

./root/usr/lib/cmplrs/cc

SK ./root/.WD/hello.c

./root/usr/include/stdio.h

CD (][)
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Fig. 8.3. Two cache entries with the same primary key (PK).
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Entries
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Primary Key (PK)

./root/usr/lib/cmplrs/cc

./root/.WD/hello.c

./root/usr/include/stdio.h

./root/.WD/defs.h
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Fig. 8.4. Multiple cache entries with the same primary key (PK), but with differing sets of
secondary dependency names.

even among entries with the same primary key. (By definition, the set of names con
tributing to the primary key is statically determined, so there is no need to include
them in the PK calculation.) An example is shown in Figure 8.4, where cache en
tries 1 and 2 have different sets of secondary dependency names because the file
"hello. c" was edited to include (in the sense of the C preprocessor's #include
directive) a file named "de f 8 . h" instead of "8 tdi 0 . h", The difference between
entries 2 and 3 is that the file "de f 8 . h" was changed.

Figure 8.4 also illustrates an important property of the Vesta caching strategy.
Correct (i.e., sound) caching requires that all cached functions be functional and
deterministic; that is, the same (possibly dynamic) inputs always produce the same
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output.5 This means that cache entries like the one labeled "X" in the figure cannot
be created. Note that the fingerprints of cache entry X agree with those of cache
entry 3 for those secondary dependencies shared by the two entries, but entry X
has an additional secondary dependency on the file "8 tdio. h". A little thought
shows that this cannot occur in a functional, deterministic program. All external tools
(compilers, linkers, etc.) invoked from Vesta evaluations as well as functions written
in SDL behave properly in this respect.

8.3 The Function Cache Interface

Having examined primary and secondary dependencies, we can now consider the
two-step cache lookup process in detail. Figure 8.4 helps illustrate how lookups in the
cache are performed. We continue with the function call from our running example:

cornpile("hello.c", [debug = "_g"], .);

The cache lookup protocol involves two remote procedure calls (RPCs) from a client
evaluator to the function cache server.

1. In the first RPC (the "SecondaryNames" step), the evaluator computes the pri
mary key from the function call site (as shown in Figure 8.2), and passes it to the
function cache. In response, the cache returns a set of names that is the union of
all secondary dependency names associated with cache entries having the des
ignated primary key. In our example, the secondary dependency names are the
four pathnames shown in Figure 8.4.

2. In the second RPC (the "Lookup" step), the evaluator computes the fingerprints
of the values associated with each of those secondary dependency names in the
current evaluation context and sends them to the function cache. The function
cache then compares those fingerprints to each of the entries with the designated
primary key, looking for a match between the fingerprints from the evaluation
context and those in a cache entry. In our example, the received fingerprints
are compared to the columns of Figure 8.4. If any column matches, a cache
hit is reported and the result value from the selected cache entry is returned.
Otherwise, a cache miss is reported.

In the event of a cache miss, the evaluator proceeds to execute the function, recording
dynamic fine-grained dependencies along the way (as described in Section 8.4 be
low). It then forms the primary key, secondary key, and result value for a new cache
entry, and calls a method of the function cache interface that adds this new entry to
the cache.

5 This requirement is stated more strictly than is actually necessary. For example, some com
pilers embed a timestamp in the object files they generate, so strictly speaking, the contents
of generated object files depend on when the compiler is run. However, such embedded
timestamps are semantically irrelevant to the use of the object files, so it is safe to treat the
compiler as a functional tool.



120 8 Incremental Building

This two-step protocol minimizes the amount of data that has to flow between
client and server during a cache lookup, which is important for performance. How
ever, because the lookup process requires two steps, it is possible that other cache op
erations may occur between them. In particular, what should be done if another client
adds a new cache entry that includes some new secondary names, that is, names that
did not appear in the set returned by the SecondaryNames step? Locking the cache
against updates between the two RPCs would eliminate the problem, but is unappeal
ing. Instead, the protocol uses optimistic concurrency. The Lookup step may return
a result indicating that the set of names returned from the SecondaryNames step is
stale, in which case the client restarts the protocol afresh.

8.4 Computing Fine-Grained Dependencies

Now that we have seen the process by which cache lookups occur, we can tum our
attention to the other major complexity of incremental building, the computation of
fine-grained dependencies. We begin with a brief description of the technique used
by the evaluator to represent dependencies, then examine in tum the three major
cases it must handle.

8.4.1 Representing Dependencies

As noted earlier, dependencies in general are predicates on the evaluation context.
In order for a cache hit to occur, these predicates must hold. Consequently, a de
pendency that is too coarse-grained corresponds to a predicate that is unnecessarily
strong. The evaluator's goal is to record dependencies that are as weak as possible
but strong enough to capture the relevant aspects of the state.

In practice, the dependencies recorded by the evaluator are not the weakest possi
ble predicates. Sometimes, unnecessarily strong dependencies are deliberately used
because they can be represented more compactly and are therefore easier and cheaper
to manipulate and check. Inevitably, there is a tradeoff between the strength of the
recorded dependencies and the cost of a cache miss. Of course, the evaluator must
never record a dependency that is too weak, since that would produce false cache hits
and incorrect builds.

In balancing this tradeoff, the Vesta evaluator avoids representing arbitrary pred
icates. Instead, it uses a small, fixed collection of predicates, encoded as dependency
paths. It is these dependency paths that are passed to the function cache as the names
in a cache entry's secondary key.

The following grammar gives the syntax of a dependency path:

dpath ..- t :path
t ::= VIXIDITILIE

path ::= e lid/path

A dependency path thus takes the form t :path, where t denotes the dependency type,
and path specifies the component of the evaluation context on which the evaluation
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depends. e denotes an empty path; a path of the form idle or elid is equivalent to the
path ide

The type is a single-character code that selects a predicate on the path's value that
must be satisfied for the dependency to match. The path is a hierarchical name that
is meaningful in the context of the function call being evaluated. However, despite
its appearance, path should not be confused with an SDL expression that selects a
member from a (possibly nested) binding. Indeed, if a is a binding containing a field
b, then the path used for dependency recording purposes is alb, which looks just
like the Vesta language expression for selecting the field. However, if a is a closure,
the path alb represents for dependency purposes the value of b in a's context. The
corresponding SDL expression is erroneous.

Associated with each dependency path is a value whose fingerprint is passed to
the cache on a lookup operation or when a new cache entry is created. The rules
for computing the value associated with a dependency path vary depending on the
dependency type and the kind of function being evaluated. These rules are described
in the sections that follow.

We can now look in detail at the algorithms used by the evaluator to collect and
store dependency information for the three kinds of function calls that produce cache
entries: tool invocations (i.e., calls of .rrun.LooL), user-defined function calls, and
system model evaluations.

8.4.2 Caching External Tool Invocations

Calls to the _run_tool primitive are the leaves of a Vesta evaluation's call graph.
Caching these calls is fairly straightforward. The primary key for the cache entry
is formed by combining a fixed fingerprint for the .rrun.t.oo l primitive with the
fingerprints of all of the function's arguments except the implicit " ." argument.6

As described in Section 5.2.3, the tool's file name space is supplied via the binding
. / roo t. Obviously, recording a dependency on the complete file name space repre
sented by . / roo t would be too coarse-grained, since it is very unlikely that the tool
will access all the files in that directory tree. Instead, references into this file name
space during the tool's execution form the cache entry's secondary key. As described
in Sections 3.1.2 and 7.1.2, the tool's file system references are intercepted by the
repository, sent to the evaluator, and satisfied by the evaluator by doing lookups in
the binding. /root.

Actually, the repository distinguishes two different kinds of requests from the
tool, and the evaluator can record several different types of secondary dependencies
based on the kind of request and its outcome. A lookup request occurs when the tool
looks up a name in a binding that represents a filesystem directory. A list request

6 To be strictly correct, the primary key also includes the environment variables, which are
passed to .zun.t.oo l in . / envVars. This is a matter of expedience. It would be prefer
able to record dependencies on only those environment variables read by the tool, but there
is no mechanism for intercepting such references in Unix. Since, in practice, few tools
require any environment variables to be set, the coarser-than-necessary dependencies on
environment variables have made no discemable difference.
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occurs when the tool enumerates the entries in such a binding. Table 8.1 lists the
dependencies that the evaluator creates in response to repository requests during a
tool execution. We look at these in tum.

Operation
lookup(dir,jile) =} success
lookup(dir1, dir2) =} success
lookup(dir,name) =} failure
list(dir)

Dependency Path Value
V :dir/file Value(dir/file)
T :dir1/dir2 "t.binding"
X:&rlname FALSE
D :dir domain(dir)

Table 8.1. The dependency types recorded by the evaluator during external tool invocations.

When a name lookup succeeds and returns a file, the evaluator passes the file's
shortid (see Section 7.1.1) back to the repository and records a value (V) depen
dency. The dependency's associated value is the fingerprint of the file supplied by
the repository (see Section 7.1.3).

When a name lookup succeeds and returns a directory, the evaluator passes a
handle for the directory back to the repository. The tool now knows that the directory
exists, so the evaluator records a dependency reflecting this fact. Since the evaluator
treats directories as bindings, it records a type (T) dependency on the directory's
pathname, with value "t.binding". If the tool does nothing else with the directory,
this is the dependency that will be recorded. However, in most cases, the tool will
subsequently look up a name in the directory; that is, it will perform a lookup using
a path that has the directory name as a prefix. The result of this lookup yields a new
dependency path, per the table, which replaces the type dependency on the parent
directory. That is, a dependency of any type on the path din implies that the value of
T :d is "t.binding", This situation arises very often, making the optimization, which
ultimately omits a secondary dependency in the cache entry, highly worthwhile.

When a name lookup fails, the evaluator returns a "not found" result to the repos
itory and records an existence (X) dependency on the path. Since the path does not
yield a value, the dependency's associated value is (the fingerprint of) FALSE.

Finally, if the evaluator receives a request to list a directory, it records a do
main (D) dependency. To obtain the dependency's value fingerprint, the evaluator
combines the fingerprints of the names defined by the corresponding binding, in a
canonical order. The values bound to those names are not included in the fingerprint.
This procedure reflects the semantics of listing a directory, since the result depends
only on what names are defined and their order, not on what the names are bound to.

Table 8.2 shows some of the secondary dependencies that might be recorded
for a simple compilation of a file named "hello.c". The fingerprints listed are
those supplied by the repository for the corresponding files (except, of course, for
FP(FALSE)).

Correctness requires that the evaluator record a FALSE existence (X) depen
dency when a lookup request fails, as in the third line of Table 8.2. Consider the
following common situation, illustrated by the table. A compiler typically searches
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Fingerprint
V ./root/usr/lib/cmplrs/cc
V ./root/.WD/hello.c
X ./root/.WD/stdio.h
V ./root/usr/include/stdio.h

FP(cc)
FP(hello.c)
FP(FALSE)
FP(stdio.h)

Table 8.2. Some of the secondary dependencies for a simple compilation of the file "hello.c".
FP denotes the fingerprint function.

several directories for header files (using a search path, described in Section 2.4). In
our example, it searches the working directory (. root/ . WD), then a standard lo
cation (. / root/usr / include). Assume, as in this case, that the file s tdio. h
is found in the standard location rather than the working directory. Suppose that the
evaluator failed to record a dependency on the non-existence of the file in the work
ing directory. This would result in a cache entry with the secondary dependencies
listed in the table but omitting the third line. Now, consider a subsequent compila
tion in an identical environment except that the working directory now contains a file
named s tdi 0 • h. Obviously, this compilation should miss in the cache, but, because
of the way secondary dependencies are processed, it will incorrectly hit. Why? Re
call from Section 8.3 that the function cache server will send to the evaluator a list of
names of secondary dependencies whose fingerprints are to be obtained from the cur
rent evaluation context. That list will include. / root /usr / include/ s tdio . h,
and when the evaluator returns its fingerprint, there will be a match with the one in
the cache entry, implying a dependency match. But the new evaluation should not
depend on that file, since, were the compilation to be carried out, it would access
. /root/ .WD/stdio.h instead. Thus, the evaluator's failure to record the first
evaluation's dependence on the non-existence of this file has produced an erroneous
cache hit, which of course, is unacceptable," It is easy to see that including the non
existence dependency causes a cache miss, as required.

8.4.3 Caching User-Defined Function Evaluations

Computing fine-grained dependencies for calls to _run_tool, described above, is
relatively straightforward, since those dependencies are limited to file system ac
cesses. But handling the general case of caching a call to a user-defined function
written in SDL is considerably more complex; indeed, it is the most complicated and
subtle part of the evaluator.

We define the rules for dependency calculations during the evaluation of a user
defined function by induction on the grammar for the language constructs that can

7 It is worth noting that some popular build systems do not handle this situation correctly. For
example, ClearCASE [4] records dependencies only on existing files. Makefiles generated
by the Unix Makedepend tool have this problem as well. In both cases, this deficiency can
produce inconsistent builds.
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e ::=

la
Ix
I AX.e
I if el then e2 else e3

I [nl = el,n2 = e2, ... ,nk = ek]

I e/n
Ie!n

leI +e2
I let x = e1 in ei

leI (e2)

literal (constant)
variable (identifier)
lambda (closure)
conditional
binding constructor
binding selection
binding domain test
binding overlay
variable introduction
function application

Table 8.3. The syntax of a semantic subset of SDL.

appear in a function body. To keep the case analysis manageable, the discussion
here is restricted to a semantic subset of SDL whose syntax appears in Table 8.3.
This subset includes the core parts of SDL and all the features that significantly
affect the calculation of fine-grained dependencies. The subset language omits SDL's
sixty-plus primitive functions, the iteration construct, and the import clause, for
which dependency calculations are straightforward. The grammar in the table uses
the following conventions: a is any constant (that is, any member of Literal, the
set of all possible constants in the language), x is a variable (that is, any member
of Id, the set of all possible identifiers), e is an expression, and n is a name. The
constructs of the subset language should all be familiar except perhaps the boolean
valued expression e!n, which tests whether the name n is bound in the binding e.

As it interprets a Vesta expression (that is, a syntactic construct), the evaluator
computes both a value and a set of dependencies for that value. Every expression
is evaluated in some evaluation context, which is a function from variable names
(identifiers) to values. Eval(e, c) denotes the result of evaluating the expression e in
the context c and Dpnd(e, c) denotes the dependency paths resulting from evaluating
e in c. Thus, the dependencies are precisely the values of Dpnd(e,c), where e ranges
over the syntactic forms in the subset language of Table 8.3.8

Before diving into the details of the dependency rules, we need to consider more
closely the workings of the evaluator as it prepares and uses cache entries.

The Composition of Cache Keys

We saw earlier the separation of dependencies into primary and secondary groups
and the way these groups appear in the two-step cache lookup protocol. We observed
that the primary key should include only information available at the call site, but
how does the evaluator decide specifically what information that should be? The
obvious approach of using all the function arguments produces too coarse-grained a
result, as we saw. The other extreme, using none of the arguments, groups too many

8 Rules for evaluation of the complete language appear in Section A.3.3.
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cache entries under the same primary key (e.g., all invocations of the compile
function, regardless of the file being compiled) with poor lookup performance as the
result.

The evaluator adopts a middle course. For the primary key, it combines the fin
gerprint of the function being invoked (which is actually a fingerprint of its parse
tree) with the fingerprints of "simple" arguments (that is, booleans, integers, and
texts). The evaluator records fine-grained secondary dependencies for everything
else, specifically lists, bindings, and closures. This is a natural strategy based on
the need for fine-grained dependencies, since all the values whose fingerprints form
the primary key have no fine strucrure.l'

The Interaction of Caching and Evaluation

We noted that the evaluator computes a pair for each syntactic construct it interprets.
This pair consists of the value as defined by the SDL semantics (that is, the value
as perceived by the user) and the dependencies of that value. The dependencies are
invisible to the user, but are an implementation necessity. In reality, it is this value
dependency pair that is stored in a cache entry as the result of a function call. Thus,
when the evaluator encounters a function call, it can consult the function cache and
either obtain the result from the cache (a hit) or proceed to interpret the call (a miss).
Either way, it will have both the SDL-defined value and the implementation-required
dependencies it needs to continue evaluation.

This interchangeability of function call result and cache result is formalized as a
theorem later (page 130); what is important here is the intuition behind it. Assume
that the cache contains an entry with primary key pk that resulted from evaluating the
expression e in a context Cl. The secondary names associated with this cache entry
will be the set of dependencies10 Dpnd(e,Cl ). When the evaluator is interpreting e
in another context cz, it will consult the cache. It should get a hit on the cached
entry only if the values computed in Cz for the dependencies Dpnd(e, ci) match the
values stored in the cache. Note that the values associated with the dependencies in
the cache are precisely those computed in Cl for Dpnd(e, Cl ).

We therefore define equivalence between two contexts with respect to a set of
dependencies d as follows:

Equiv(Cl,C2,d) == (Vp Ed: Value(p,cl) == Value(p,c2)).

9 The Vesta language includes a construct (a stylized comment, or "pragma") that enables
the writer of a function to indicate explicitly which parameters are to be included in the
primary key calculation (see Section A.3.3.17). In practice, this facility is rarely needed,
and then only in specialized situations (e.g. in writing abridge).

10 The previous section mentioned that the cache stores secondary names. In fact, the cache
treats these names as uninterpreted strings, and the evaluator exploits this fact to store de
pendency paths, which are more complex than simple names. Hence, the terms "secondary
name", "dependency", and "dependency path" are essentially interchangeable when they
refer to the content of cache entries.
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In this definition, Value(p, c) denotes the result of "evaluating" the dependency path
p in the context c. It corresponds to the fingerprint associated with each secondary
name in the cache.

Clearly, the cache should produce a hit only if performing the evaluation of e in
C2 would yield the same result as the one stored in the cache, that is:

This is essentially the correctness theorem, which is stated in more technical form at
the conclusion of this section.

We now are ready to look at the specifics of dependency calculation for user
defined functions.

Dependency Types

During the invocation of a user-defined Vesta function, the evaluator records six dif
ferent types of dependencies, shown in Table 8.4. The table also shows in each case
the rule that the evaluator uses to compute Value(t : path, c), the value of the depen
dency path t :path in the context c.

Type
v
X
D
T
L
E

Dependency on
the component's ...
...complete value
...existence
...domain
...type
.. .length
...expression (closures)

Computed Value
Value(V : path, c) == Eval(path, c)
Value(X: path/id,c) == Eval(path!id, c)
Value(D : path, c) == {n IEval(path!n, c)}
Value(T : path, c) == Eval(typeo/(path),c)
Value(L : path, c) == Eval(length (path) ,c)
Value(E: path,c) == Eval(path,c).body

Table 8.4. The meanings of the six dependency types and the rules used by the evaluator to
evaluate each type of path in a context c.

The first four dependency types are familiar from the previous section's discus
sion of calls of the .zun.t.oo l primitive. As before, V denotes a dependency on the
entire run-time value. X, D, and T are broader in scope than previously described,
as they apply to named values in SDL, not just file and directory names. That is,
X denotes a dependency on the existence (or non-existence) of a name in a bind
ing or closure context, D denotes a dependency on the domain of a binding (i.e., the
sequence of names in the binding's domain), and T denotes a dependency on the run
time type of a value, in the sense of the .Lypeco f primitive (see Section A.3.4.7).

The L dependency type denotes a dependency on the length of a list or binding.
It arises solely from the use of the _length primitive.
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Finally, E denotes a dependency on the value of a closure cl's expression (that is,
its function body), indicated by the notation clbody.t!

It is perhaps worth repeating that there is nothing fundamental about this set of
dependency types. They encode predicates that were chosen based on practical con
siderations and experience in using the Vesta language. This set of dependency types
works well for the standard construction environment (Section 6.2.1) and should
work well for many similar environments. It is possible, of course, that a radically
different style of use of the Vesta language might reveal a need for additional depen
dency types to record weaker dependencies in certain situations.

Dependency Calculation Rules

Armed with the dependency types and (subset) SDL grammar, we can now write the
mathematical rules for calculating dependencies. We first define D(e,c,t:p) where
t : p is a dependency path; D(e,c, t :p) evaluates to a set of dependency paths. We
then define Dpnd(e,c) == D(e, c,V: e). Intuitively, D(e, c,t: p) is the dependency for
just the portion of e's value that is "selected by" p, in the sense that a name selects a
value from a binding and a path selects a value from a nested collection of bindings.
The definition of D(e, c, t : p) now proceeds by cases on the productions of the SDL
grammar: 12

• If e == a (a E Literal), then D(e,c, t :p) == {}. Evaluating a constant has no depen
dency on the context.

• If e == x (x E Id), then D(e, c, t: p) == {t: x]p}. Evaluating a variable x depends
only on the dependency path extended on the left by x.

• If e == Ax.e1, only the following three cases arise:

D(e,c, V: e) == {V:n In E FVs(e)}
D(e,c,E:£) == {}
D(e,c,t:Ylp) == {t:ylp}, ify E FVs(e)

where FVs(e) denotes the set of e's free variables. In the first two cases, the
path is empty. If the type of the path is V, the lambda expression depends on

11 As noted in connection with the _run_tool primitive, some dependencies imply others.
For example, the value (V) dependency implies the other five, meaning that the evaluator
could choose to discard one of the others if it encounters a value dependency with the
same dependency path. At present, the evaluator does not attempt to minimize the set of
dependencies recorded in a cache entry by eliminating those subsumed by others. There
are space and time tradeoffs here, which have not been fully investigated.

12 The dependency calculation explained here is related to earlier work by Abadi, Lampson,
and Levy [1], which uses a labeled A-calculus to compute both dynamic and fine-grained
dependencies. However, their approach is significantly different. It associates labels with
all expressions in a function body, and then develops rules for keeping the labels of only
those expressions that are evaluated during a call. As a result, it records only one kind of
dependency, analogous to the value dependencies used here. Also, their calculus supports
only the selection operation on records. Computing dependencies for the binding operators
! and + complicates the problem significantly.
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the whole closure value, that is, the values of e's free variables (excluding the
closure argument x). If the type of the path is E, it depends on only the lambda
expression of the closure value, namely, the expression e. Here, a shortcut is
possible. Since dependency analysis is used for secondary dependencies only
and since e is incorporated into the primary key for every call of e, there is no
need to record a (secondary) dependency on e at all. Hence the empty set in the
second case above. Finally, in the third case, the path is not empty and y is a free
variable of e. It signifies a dependency only on the portion of y's value that is
selected by p.

• If e = if el then e: else e3, the rule is:

dl ==D(el,c,V:e)
VI == Eval(el,c)

d2 == if VI then D(e2,c,t: p) else D(e3,c,t: p)

D(e,c,t:p) == dl Ud2

This rule states that the dependency of a conditional is the union of the dependen
cies of the guard el and the dependency of either ei or e3,depending on the value
of el. An empty path is used in computing the guard's dependencies because the
guard evaluates to a boolean value that has no components.

• If e == [ni == el,n2 == ei, ... ,nk == ek], there are two cases to consider. If p is empty,
it signifies a dependency on the entire binding:

D(e,c,t:e) == Uf=ID(ei,c, V:e)

If p == t :n; / p', it signifies a dependency only on the value of field ru:

D(e,c,t:ni/p') ==D(ei,c,t:p')

• If e == el/n, then D(e,c,t: p) == D(el, c,t: n] p). This is binding selection, and the
rule says to recursively apply D with the path extended on the left by n.
If e == el!n, then D(e,c,t:p) == D(el,c,X:n/p). This is a binding domain test,
and the rule says to recursively apply D with the path extended on the left by n.
Compare this with the preceding rule and note that the new dependency path has
type X, regardless of the type t.
If e == el + e2, then there are two cases to consider: If p is empty, it signifies a
dependency on the entire binding:

D(e,c,t:e) ==
D(el, c,V :e) UD(e2,c,V :e)

If p == t :n/ p', it signifies a dependency only on the binding that supplies the n
field. In the case that the n field comes from el, the semantics of n require adding
the dependency that n is not defined in e2:

D(e,c,t:n/p') ==
if Eval(e2!n,c)

then D(e2,c,t: n/p')

else D(e2,c,X: n) UD(el, c,t: n] p')
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• If e == let x == el in ei. then

Cl == co {x ~ Evai(el'c)}
d: == D(e2,Cl , t : p)

d2a == {t': p'l t': p' E d2/\ head(p') =1= x}
d2b == {t': p'l t' .x]p' E d2}

where 0 denotes the operation for extending a context (that is, adding a name
value pair), and head(p) denotes the first element of p's path. The first line of the
rule augments the evaluation context with x mapped to Evai(el'c), The second
line computes d2 as the dependency of ez in the augmented context. The next two
lines partition the dependency paths in d2 into two sets d2a and d2b. The set d2a
contains paths unrelated to x; all of these must be included in the result. The set
d2b contains the tails of the paths in d2 starting with z; the final line recursively
computes D(el , C, p') for each path p' in d2b.

• If e == el (e2), then

Evai(el'C) ==< Ax.e3,c3 >
dl == D(el,c,E: e)

Cl == C3 0 {x ~ Evai(e2'c)}
d3 == D(e3,Cl, t: p)

d3a == {t': p'l t': p' E d3/\ head(p') =1= x}
d3b == {t' :p'l t' :x/p' E d3}

D(e,c,t:p) == d1U
(Ut':P'Ed3aD(el,c,t' :p')) U
(Ut':p'Ed3bD(e2,c, t' :p'))

As one would expect from the semantics of function application, this rule resem
bles the rule for the let construct, where el in the let expression corresponds to
the argument ei here, and e: in the let expression corresponds to the closure body
e3 here.

Fine-Grained Analysis: An Example

Here is a simple example demonstrating the workings of some of these rules. Con
sider the evaluation of the expression

e == let X == [r== [s==y],t==z] us xlr]«

in the context c. It is easy to see by inspection that the value of this expression is the
value ofy in c, that is, Evai(e,c) == c(y). Now let's apply the dependency rules.

Dpnd(e,c)
== { by the definition of Dpnd }

D(e,c,V:e)
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Since the expression e is a let construct, the let rule applies. The main step in calcu
lating the dependencies for the let construct involves calculating the dependency set
named d2 in that rule, where el == [r== [s==y], t ==z] and ei == x]rIs. Using Cl to denote
the augmented context co {x ~ Eval(el' c)}, the value for d2 is derived as follows:

D(xlrIs,Cl, V: e)
== { by the binding selection rule }

D(xlr, Cl, V: s)
== {by the binding selection rule }

D(X,cl,V:rls)
== {by the variable rule }

{V:xlrls}

From the dependency set d2, we compute the partitioned sets d2a and d2b:

d2a == 0
d2b == { V: rIs}

We can now complete the computation of Dpnd(e,c) as follows:

D(e,c,V:e)
== {by the let rule }

oUD([r== [s ==y],t ==z], c, V: rIs)
== { by the binding constructor rule }

D([s==y],c, V:s)
== {by the binding constructor rule }

D(y,c, V:e)
== {by the variable rule }

{V:y}

Hence, the evaluation of e in c depends only on the value of y, as expected.

The Correctness Theorem

With the preceding sections as background, the correctness theorem follows.

Theorem 1 (Caching Correctness) If the expression e evaluates to a value v in the
contextCt, then we can computeDpnd(e,er). and, ifeverypath in Dpnd(e,ci) evalu
ates to the samevalue in contextsCl and C2, then e also evaluatesto v in C2. Formally,

(3v : Eval(e,Cl) == v) ===>
C~d: Dpnd(e,cl) == d)

/\ (Equiv(Cl,c2,Dpnd(e,cl)) ===>
Eval(e,C2) == Eva1(e,Cl))).

The proof of the theorem is beyond the scope of this book. However, the proof
was mechanically checked with the Nqthm theorem prover [9]. This process ex
posed some subtle problems in the initial dependency rules, and several iterations
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of running the prover and correcting the dependency rules were required before the
mechanical proof succeeded. Only after a successful proof were the rules imple
mented in the Vesta evaluator. Because the subset language includes all the complex
aspects of SDL that affect dependency calculation, the proof provides considerable
confidence in the correctness of Vesta's caching.

8.4.4 Caching System Model Evaluations: A Special Case

The preceding section described the evaluator's rules for caching user-defined func
tion calls. Since the evaluation of a system model is a special case of function appli
cation (recall from Section 5.2.4 that a system model is a special form of closure),
the rules we have just seen apply when caching model evaluations. However, they do
not take advantage of some special properties of models, which, as we will see, can
significantly enhance cache performance.

When one function calls another, most (secondary) dependencies of the callee
typically become dependencies of the caller. Hence, in the absence of special mea
sures, the root function of an evaluation accumulates most of the dependencies of ev
erything in the evaluation, making it costly both to store and to use the corresponding
cache entry. It is desirable, therefore, to eliminate some of those dependencies while
preserving caching correctness and without losing the benefits of fine-grained de
pendencies. Some properties that distinguish system models from other user-defined
functions make this possible.

In particular, the evaluator can characterize the contents of a system model in
two different ways. A system model, considered as a closure, has a body and a set
of free variables, the latter being the names introduced and bound in the files
and imports clauses. But a system model is also an immutable file residing in
an immutable directory. These two views of a model suggest two different ways to
compute its fingerprint for dependency purposes. The evaluator can fingerprint the
parse tree of the closure body, just as it would fingerprint any other Vesta closure.
Alternatively, the evaluator can fingerprint the entire immutable directory in which
the model resides (see Section 7.1.3) plus the file name of the model. Each of these
fingerprints then uniquely characterizes the model for dependency purposes, though
in significantly different ways.

The evaluator computes both of these fingerprints for a model and constructs two
cache entries for its evaluation. A normal model cache entry is based on the finger
print of the model as a closure, and is constructed using the rules of the preceding
section, just as for any other closure. This typically means that the secondary de
pendencies include all the free variables of the function (the f i 1 e sand impor t
clauses) plus the fine-grained dependencies from the environment (" .") parameter.
A special model cache entry is based on the fingerprint of the model as a file, so
the primary key incorporates all of the immutable content of the model's directory,
which includes everything named by its f i 1e s clause. The primary key also in
cludes, indirectly, models in other parts of the repository that are referenced through
the import clause, since the immutable pathname of each such import appears in



132 8 Incremental Building

the text of the system model and thus is "covered" by the directory fingerprint. 13 This
means that the secondary dependencies for a special model cache entry come solely
from the environment parameter.

Special model entries have two important advantages. First, since they have fewer
secondary dependencies than normal model entries, they are faster to look up. Sec
ond, and more importantly, special model entries serve as cut-off points that prevent
many dependencies from propagating up the function call graph. In particular, indi
vidual dependencies on files or imports of a model are not propagated to cache
entries nearer to the root in the function call tree. Without these cut-offs, the root
node of the function call graph of a build would contain a separate dependency on
every source file contributing to the build.

Because of their coarser-grained dependencies, special model entries inevitably
produce some false cache misses. However, they produce frequent cache hits. For ex
ample, when an application is built using standard libraries, most of the libraries are
generally unchanged from a previous build, so the evaluator will get fast cache hits
on their special model entries. This situation occurs quite often. The performance
benefits of the special cache entries are sufficiently appealing that developers some
times create a separate model for a piece of Vesta code, rather than simply wrapping
that code in a function definition within an existing model. They thereby obtain better
caching performance in exchange for a slightly larger number of model files.

When looking up a model evaluation in the cache, the evaluator naturally checks
for a hit on the special model entry first. If that fails, it tries for a cache hit on a
normal model entry. It is uncommon for a cache lookup to miss on the former and
hit on the latter, but it does happen occasionally, typically when a small cosmetic
edit has been made to the corresponding model. Such hits easily save enough work
to justify the cost of creating the larger normal entry. Whether a hit occurs or not,
the evaluator uses the special model fingerprint in the dependency calculation for the
caller of the model.

8.5 Error Handling

The preceding section described how the evaluator collects the information necessary
to create cache entries. From a purely formal point of view, a function evaluation
that produces an error has simply created a result of a particular kind, which could
be cached like any other. In practice, however, caching the result of a function with
an evaluation error would be undesirable, as we will now see.

Two cases of evaluation errors affect caching: runtime errors that occur while
evaluating an SDL expression and failed _run_tool calls. The evaluator handles
the first of these cases in the expected way, by terminating the evaluation and pro
viding the user with a suitable error message that incorporates a call stack trace.

13 Unfortunately, the directory fingerprint also includes any files in the model's directory tree
that the model doesn't reference, as well as irrelevant elements in the model text such as
unused imports, comments, and whitespace.
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Naturally, no cache entries are created for any of the function evaluations that were
in progress (that is, on the call stack), since their evaluation is incomplete. Cache
entries previously produced for completed function evaluations are retained; conse
quently, if the evaluation were to be performed again, the same error message would
be regenerated quickly.

When a .run.too.l call fails, however, the evaluator does not necessarily abort
the evaluation. A failed _run_tool call frequently indicates a compilation error.
If the build in progress includes many compilations, the user will generally prefer
to deal with all the errors at once. So, the evaluator offers a command-line option
to continue evaluating even in the presence of tool failures. If the option is not en
abled, failed _run_tool calls abort the evaluation, just like any other runtime error.
However, if the option is enabled, the evaluator outputs an error message and con
tinues. The Vesta bridge functions that invoke .zun.t.oo I are typically written to
detect an error and to return the special value ERR to their callers. Any attempt to use
this value causes an error that terminates the evaluation, but frequently that doesn't
happen until most or all of the compilations involved in a build have been completed.

When a _run_tool error occurs, the user can direct the evaluation to continue
but the evaluator never caches the result, for two reasons. First, occasionally a tool
invocation fails because of a transient condition that is outside Vesta's control, such
as a full disk or a network timeout. A failure of this kind violates Vesta's assumption
that the result of a function is deterministic. Capturing such a failure in the cache
would make it impossible to correct the problem by clearing the transient condition
and retrying. Second, even if the error represents a deterministic result, the associated
error message that generally is displayed by a Vesta bridge is not incorporated in the
result it returns, for practical reasons. That means the error message is essentially a
side-effect (something that Vesta functions aren't supposed to have!) and to cache
the result would be to lose the ability to recreate that side-effect on a subsequent
cache hit. By refraining from caching the error result, the evaluator enables the user
to recreate the error message(s) by performing the evaluation again.

There is one additional complexity associated with the evaluator's option to con
tinue in the face of _run_tool errors. We have seen that a cache entry for the tool
invocation must not be created. Caching any function call higher up in the call graph
would be equally bad, since a hit on such an entry would prevent the failed call to
.zun.t.oo I from reoccurring, again suppressing the error messages. To handle this
situation, the evaluator records a cacheable flag for each runtime value. This flag is
true for most values, but false for the value of a failed .zun.t.oo l call. The evalua
tor computes the cacheable flag of a value based on the cacheable flags of the values
from which it is produced. A cache entry for a function evaluation is created only
when its result value is cacheable.

There is also an interaction between error reporting and the existence of closures
as first-class values in SDL. Because a closure can be returned as part of a function's
result, it can be cached, meaning that its value (the parse tree of its body) is held in
a cache entry. If that cached value is subsequently retrieved and the closure invoked,
the Vesta evaluator must be able to report an error during the closure's evaluation in
just the same way as if the closure had not come from a cache entry. This implies that
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the evaluator must include in the cached parse tree sufficient information to be able to
report the original source location (file name, line number, position) for any construct
that might produce an error (which is essentially everything in the language). This
extra information increases communication, memory, and disk storage costs in the
function cache. However, hard-won experience in debugging system models that use
closures confirms the benefit associated with this additional cost, as it is extremely
hard to isolate errors in cached closures without source location information.

8.6 Function Cache Implementation

We now tum our attention from the evaluator to its partner, the function cache. Sec
tion 8.3 briefly introduced the interface that the evaluator uses to perform cache
lookups. This section discusses some of the issues that the function cache server
faces in implementing that interface. These arise directly from the operational re
quirements on the server, which must:

• store cache entries persistently,
• tolerate faults and errors, both by clients and in the server itself, while maintain-

ing consistent cache state,
• support fast lookup,
• service multiple clients concurrently,
• support concurrent weeding (the deletion of unwanted derived files and cache

entries) without affecting clients adversely, and

• scale.

Let's look briefly at the way the cache server attacks each of these requirements.

Persistence. Properly shutting down and restarting the server must not cause any
cache entries to be lost. Persistence is achieved by storing older cache entries in disk
files and using a combination of logging and checkpointing for newer cache entries.
For efficiency, log entries are kept in memory, and the interface to the function cache
includes a method for synchronously flushing all pending log entries to disk.

Fault tolerance. In the event of a crash or other failure of the server, the function
cache must be able to recover in a consistent state. In particular, the various log files
and cache entry files must be flushed in an order that allows the recovery algorithm
to tolerate failure at any time. Although some recently created cache entries may be
lost in a crash, only a relatively small amount of work has to be repeated to recreate
them.

The server must also tolerate errors and failures in its clients. For the former, the
function cache interface includes run-time checks of its arguments with provisions
for an error return code. For the latter, the function cache ensures that any resources
associated with interrupted or otherwise incomplete evaluations are eventually re
claimed.

Fast lookup. Since disk reads dominate the time required to do a lookup, cache
entries are arranged on disk so that most lookups can be performed with at most two
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disk reads. Moreover, many lookups result in hits on in-memory cache entries, which
can be serviced without any disk reads.

Concurrent client access. The server is multi-threaded, and its data structures are
organized to permit fine-grained locking and thereby to avoid excessive lock con
tention and serialization of clients.

Concurrent weeding. The weeder (Chapter 9) is a special client of the cache server.
It must be possible for the weeder to complete its work without affecting other clients
adversely. It is impractical to lock out clients while the weeder is running, as it can
take minutes to hours to decide what to weed and then to delete it. The cache server
enables the weeder to run concurrently by providing a way for it to take a snapshot
of the cache and compute the entries to be deleted based on that snapshot. This
immediately introduces the need for an additional mechanism to ensure that cache
entries created after taking the snapshot are retained.

Scaling. The design targets for the Vesta system imply that the function cache must
be able to store tens of millions of cache entries. To accommodate that load, a two
level memory hierarchy is used; newly created and recently looked-up cache entries
are cached in main memory, while others are stored only on disk. Within each disk
file, cache entries are stored in a three-level hierarchy, which we will examine shortly.

8.6.1 Cache Lookup

Because the SecondaryNames step of the cache lookup protocol narrows the search
down to entries that match a given primary key, it is natural and efficient for the
cache server to organize its cache entry storage by primary key. Both in memory and
on disk, the server stores entries in groups called PKFiles. Each PKFile holds all the
entries that have a particular primary key.

If the cache lookup algorithm worked exactly as outlined in Section 8.3, its
Lookup step would have to search through all the cache entries in the relevant PK
File. For each such entry, it would have to perform a fingerprint comparison for each
of the entry's secondary dependencies. Both the number of cache entries in a PKFile
and the number of secondary dependencies in a cache entry can be quite large, on the
order of hundreds of each. Hence, if this naive lookup algorithm were used, lookups
would require tens of thousands of fingerprint comparisons in the worst case, and
hence would be unacceptably expensive.

The cache server avoids this problem by organizing the cache entries in a multi
level hierarchy. First, all entries with the same primary key are grouped together
(the PKFile). Then the entries in each group are partitioned in such a way that only
a subset of the entries in each group need be examined on any lookup. We now
examine how this partitioning is performed.

For any cache entry e, let e.pk denote e's primary key, let e.names denote the set
of names in e's secondary key, and for any name n E e.names, let e.val(n) denote
the fingerprint value associated with n in e's secondary key. We define the following
sets:
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Entries(pk) == {e Ie.pk == pk}

AllNames(pk) == U e.names
eEEntries(pk)

CommonNames(pk) == n e.names
eeEntriestpks

CFP(e) == ffi e.val(n)
nECommonNames(e.pk)

The set CommonNames(pk) thus consists of those names that occur in every cache
entry with the given primary key. The names in the set difference AllNames(pk) 
CommonNames(pk) occur in some, but not all, cache entries with the given primary
key; they are called uncommon. The value CFP(e), e's common fingerprint, is the
result of combining the fingerprints of all secondary values of e corresponding to
e.pk's common names. Because the EB operation is non-commutative, it is necessary
to enumerate the names n in a well-defined order. To this end, the function cache
maintains a canonical ordering for each pk of the names in AllNames(pk); it uses
that ordering when computing CFP(e).

Given these definitions, we can now examine how the cache implements both
steps of the lookup algorithm. For each primary key pk, the cache maintains the
sets Entries(pk), AllNames(pk) , and CommonNames(pk) (the last of which is repre
sented by a bit vector with respect to AllNames(pk)). In the SecondaryNames step of
the lookup protocol, the cache simply returns AllNames(pk) for the supplied primary
key. To perform the Lookup step of the algorithm efficiently, the cache maintains
CFP(e) for every entry e. It then groups the entries Entries(pk) into equivalence
classes according to their common fingerprints (CFPs). For example, Figure 8.5
shows the common names and CFPs for the cache entries of Figure 8.4 (on page 118).

o
Entries
1 2 3

Primary Key (PK)

common{ ./root/usr/lib/cmplrs/cc

Names ./root/.WD/hello.c

Common Fingerprint (CFP)

Uncommon { · /root/usr / include/ stdio. h

Names ./root/.WD/defs.h

®®®®
®®®®
@(D(D(D

®<D@@

®®
®®

Fig. 8.5. The common names and common fingerprints for the cache entries of Figure 8.4.
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PK

CFP

Entries

Fig. 8.6. The hierarchical division of cache entries first by primary key (PK) and then by
common fingerprint (CFP) for the cache entries of Figure 8.5.

The PKFile is then partitioned by CFP value; two entries are in the same par
tition if and only if they have the same CFP. Figure 8.6 shows the hierarchy that
results from the cache entries and common fingerprints shown in Figure 8.5. Multi
ple entries appear in the same CFP group only when one of the uncommon secondary
dependencies changes.

In the Lookup step, the evaluator passes the cache server a primary key pk and
the fingerprints 11,12, ... ,Ik of the values corresponding to the names AllNames(pk)
at the call site.!" Call these fingerprints Ii the call site fingerprints. The server first
combines the call site fingerprints associated with CommonNames(pk), thereby pro
ducing a common fingerprint cfp. Next, the server does a hash table lookup to see
if pk has cfp as one of its associated common fingerprints. If not, the server reports
a miss to the evaluator. Otherwise, the server examines the entries in the identified
CFP group. In testing for a hit, only the fingerprint values associated with the uncom
mon names need be examined, since by virtue of being in the correct CFP group, all
entries being considered are known to have matching values for the common names.

The performance of this lookup algorithm depends on the distribution of CFPs
within a PKFile and on the PKFile's relative number of common and uncommon
names. In the case of a compilation, the name of the file being compiled will be one
of the common names. Hence, each time a new version of a file is compiled, a new
common fingerprint is produced. The expectation is that within a PKFile, there will
be many CFPs, but each CFP group will contain relatively few entries. This means
that the number of cache entries considered during a lookup is expected to be small.

Moreover, the smaller the number of uncommon names per cache entry, the fewer
the fingerprint comparisons that the lookup algorithm must perform. It is easy to
see that, in PKFiles corresponding to compilations, the number of common names
is large compared to the number of uncommon names, since the set of file names
accessed during the compilation of a particular source file does not tend to change
much from version to version. In fact, the pattern is borne out for most other PKFiles
as well, as the data in Section 11.4.2 shows.

In summary then, the preceding lookup algorithm results in two major cost sav
ings compared to the brute-force algorithm. First, only those entries in the identified

14 For any name in AllNames(pk) that is not defined at the call site, the evaluator passes a
(unique) null value for the corresponding fingerprint.
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CFP group need be considered. Second, for the entries in a CFP group, only the
values associated with the uncommon names need be considered. These two effects
drastically reduce the number of fingerprint comparisons required to perform a cache
lookup.

8.6.2 Cache Entry Storage

We can now examine how the data structures described above are physically or
ganized. The function cache is intended to store tens of millions of cache entries.
Holding all of the cache entries in main memory is thus impractical, and a two-level
memory hierarchy is used instead. Most of the entries are stored in stable PKFiles
on disk, while the newly created cache entries and those cache entries on which a hit
has recently occurred are stored in volatile PKFiles in memory. Stable PKFiles are
stored using the file system provided by the underlying operating system.

The simplistic approach of creating one disk file for each stable PKFile produces
disk fragmentation, so instead the stable PKFiles are aggregated into MultiPKFiles.
Two PKFiles are stored in the same MultiPKFile if and only if their corresponding
primary keys have the same 16-bit prefix.P Since the primary keys, being finger
prints, are essentially random numbers, the PKFiles tend to be evenly distributed
among the MultiPKFiles.

So, to look up a cache entry, the cache server locates the appropriate volatile
PKFile (in main memory), and looks in it for the entry in memory. If no hit results,
the server opens the appropriate stable MultiPKFile, and determines the start of the
appropriate stable PKFile using a mapping table at the front of the MultiPKFile.
The PKFile header, in tum, contains a table that maps common fingerprint values
to positions in the PKFile where the entries with each CFP are stored. This table
is stored in sorted order by CFP so interpolated binary search can be used for CFP
lookup.

The typical cost of a cache lookup on disk is only a few read operations: those
needed to open the MultiPKFile and read the index to locate the PKFile, one to read
the CFP table from the head of the PKFile, and one to read the cache entry in the
event of a hit. (In the case of a miss, a matching CFP is typically absent, so the last of
these reads never happens.) The exact number of disk operations varies with the file
system's block size, its read-ahead algorithm, its caching strategy for file data and
metadata, the number of CFPs in the PKFile, and the size of the CFP table and/or
cache entry. What matters, however, is that the overall time required to check the
disk-based cache is small compared with the typical time to evaluate a function in the
case of a cache miss. Since such an evaluation is typically a compilation, a few disk
reads constitute a very acceptable overhead. (Fora more quantitative assessment, see
Section 11.4.1, which reports the time required to perform cache lookup operations
with various outcomes.)

Maintaining the cache organization is complicated by the addition or removal of
cache entries. When a new entry is added to or removed from the set Entries(pk) , the

15 This prefixsize is a compile-time constant, andcan be easilychanged.
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sets AliNames(pk) and CommonNames(pk) can change. Since a change to the latter
requires common fingerprints to be recomputed and cache entries to be reorganized,
newly added entries are kept in two in-memory side buffers, one for entries that have
all of the common names, and one for those that do not. The lookup algorithm must
consult these side buffers in addition to checking for a hit in Entries(pk).Once a large
enough number of new entries is collected, the entries are merged into Entries(pk)
together, thereby amortizing the high cost of recomputing all of the common fin
gerprints and shuffling cache entries among CFP groups. Deletions triggered by the
weeder are handled similarly; again, new common names and common fingerprints
are not computed for every deletion, but only once for each PKFile as a batch.

8.6.3 Synchronization

The function cache uses simple mutual exclusion locks (mutexes) to protect its
shared data structures. One centralized mutex protects the main cache variables. To
reduce lock contention, a separate mutex protects access to the cache entries and
other state of each volatile PKFile. The use of a separate mutex for each volatile PK
File allows lookups on different primary keys to proceed in parallel. When a PKFile
is rewritten, its mutex is held only as long as necessary. For example, the mutex is not
held while the stable PKFile is read and while its common names and the common
fingerprints of its entries are recomputed. This locking strategy allows most of the
considerable work required in rewriting a PKFile to occur in parallel with lookups
and the addition of new entries, thereby improving the cache's overall performance.

8.7 Evaluation and Caching in Action

Having examined the inner workings of the evaluator and function cache, we now
tum to some examples of their actual behavior and look at the call graphs that result
from the evaluation of several packages.

8.7.1 Scratch Build of the Standard Environment

Figure 8.7 shows the call graph that results from evaluating the model for the stan
dard construction environment against an empty cache. In this figure and the two
that follow it, the nodes of the graph denote function invocations, and an edge from
a node f to a node g indicates that f calls g. The edge is solid black if f and g are
defined in the same Vesta package, and gray otherwise.

Before we examine these figures, we must consider an aspect of the standard en
vironment model that was not discussed in Section 6.2.1. The standard environment
contains the bridges that are used in the construction of libraries and applications in
Vesta. How are the programs included in these bridges built? That is, how do the
tools (the compilers, linkers, etc.) get built? Many development organizations ac
quire their tools in binary form, so a simple reference to the tool in a bridge model's
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files clause (see Section 6.2) suffices to incorporate it in the standard environment.
However, some organizations have special development tools or custom language
processors. Since a Vesta system model must be complete, the bridge packages must
describe the construction of these tools. That description must therefore name the
tools to be used to build the bridges; that is, it must specify a previous version of the
standard construction environment. To construct a standard environment, Vesta must
first construct the required set of tools, which means building an earlier standard
environment.

Obviously, there must be a practical way to terminate this recursion, which would
otherwise lead, in principle, back to the dawn of computing. The oldest standard
environment consists of pre-built bridges; that is, its system model does not include
actual building instructions but instead included the compiler and other tools in their
binary, executable form. When Vesta "builds" this initial standard environment, it
does not need to invoke any tools, so no recursion occurs. Such an environment
is called a backstop. The next-oldest standard environment can then reference the
backstop to acquire the tools it needs and use them, if appropriate, to build new
versions of tools. Similarly, the third standard environment references and uses the
second, and so on.

While in principle only one backstop is needed in order to ground this bootstrap
ping of standard environments, in practice it is useful to make backstops with at other
times. A backstop provides the evaluator with a way to get started when the Vesta
cache is entirely empty. Having a relatively recent backstop is very handy if, for ex
ample, a new repository replica is created and its Vesta cache must be initialized. A
backstop is also a convenient way for a vendor to ship binary-only libraries to a cus
tomer who uses Vesta. In either case, the backstop is created by taking the essential
parts of the result of a build (for example, the standard environment) and writing a
new system model in which the key components of the result are captured as sources.
Utility programs can automate the creation of this model.

Returning to Figure 8.7, we can see how a build from scratch (that is, a build
occurring when the Vesta cache is empty) of the standard environment model uses a
backstop. The call graph in the figure can be divided roughly in half. The evaluation
of a backstop is on the left, the construction of the full standard environment is on
the right. Both portions of the graph involve the evaluation of library models and
bridge models. The library models are divided into three groups: C libraries, Vesta
libraries, and Modula-3 libraries. The backstop contains six bridge models, while the
full standard environment contains the same six plus three additional ones.

Looking at the graph in more detail, we note the following:

• In the backstop portion of the call graph, there are no cache hits and no tool
invocations. The former is to be expected because the cache is empty, while the
latter results from the definition of a backstop.
Although this evaluation was performed with an initially empty cache, some
cache hits still occurred. In particular, cache hits occurred on five of the six
bridges in the full environment because identical versions of those bridges had
already been evaluated in the backstop environment.
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• The three bridges that appear in the full environment but not the backstop were
all built from scratch, as evidenced by the _run_tool calls. Those for lex
and yacc involved single tool invocations, while the lim bridge was a more
elaborate construction, with 11 compilations followed by a link step.

• Cache hits occurred on the complete sub-trees of the C and Modula-3 libraries,
again because those libraries had been evaluated in the backstop. In contrast, hits
did not occur on all but two of the Vesta libraries because the version of those
libraries referenced by the full standard environment model (i.e., version 30) dif
fered significantly from the one referenced by the backstop (version 28). None
of the library evaluations resulted in a tool invocation, since in general the ac
tual construction of a library is delayed until a program is built against it (recall
Section 6.2).

8.7.2 Scratch Build of the Vesta Umbrella Library

Figure 8.8 shows the call graph that results from building a trivial C program
(sample. c) with the complete Vesta umbrella library, assuming that the construc
tion of the standard environment model shown in Figure 8.7 is already cached.
sample. c isn't a realistic program, but it enables us to examine the construction
of a non-trivial umbrella library, which constitutes the bulk of this figure. The ac
tual construction of the sample program itself consists only of the two rightmost tool
invocations.

Although the function cache is relatively empty in this example, the importance
of good caching is evident. The cache hit on the standard construction environment
in the upper left of the figure is critically important, as it saves the evaluator from
having to evaluate the entire call graph of Figure 8.7.

Perhaps the main thing to notice about this call graph is its sheer size. Building
the Vesta umbrella library from scratch requires 86 tool invocations. Except for the
fingerprint library, each sub-library is constructed by compiling the library's sources
one at a time, and then collecting the resulting objects together into a Unix library
archive file. These produce the regular-looking "weeping willow" portions of the
graph.

The construction of the fingerprint library is more elaborate and has a less regular
structure to its call graph. This library provides its client with a C header file that is
generated by a specialized program (since it contains a collection of computed fin
gerprint constants). That program must be built and executed to create the necessary
header file, which must be read in the course of compiling the fingerprint library's
implementation, which in tum is needed to complete the Vesta library needed by
sample. c. Accordingly, we see seven tool invocations in this part of the graph: the
compilation, linking, and execution of the header-generation program, the compila
tions of the fingerprint library implementation, and the construction of the library
archive for the fingerprint library.16

16 This example provides a nice illustration of the difference between Vesta's source/derived
distinction and the C compiler's source/object distinction. Here, a header file, normally
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8.7.3 Scratch and Incremental Builds of the Evaluator

We can now look at the cache behavior of the Vesta evaluator as it builds itself.
Figure 8.9(a) shows the call graph that results from building the Vesta evaluator
package from scratch, assuming that the standard environment and Vesta umbrella
library are cached as they would be after the evaluations shown in the two preceding
figures. The evaluation builds the Vesta evaluator program, plus a single-module
helper program and some derived documentation files.

We see from the figure that the evaluator got a cache hit not only on the evalua
tion of the standard construction environment, but also on the entire Vesta umbrella
library shown in Figure 8.8. By virtue of the latter cache hit, the evaluator avoided
the 86 tool invocations shown in the previous figure. The construction of the eval
uator itself is then straightforward; its 18 sources are compiled and the results are
then linked together with the Vesta umbrella library. The construction of the helper
program and documentation files is also straightforward.

Figure 8.9(b) shows the call graph that results from an incremental build of the
Vesta evaluator. This example illustrates the typical case that occurs during the inner
edit-build-test loop of the development cycle that was discussed in Section 4.2.2. Af
ter completing the evaluation shown in Figure 8.9(a), one of the evaluator's source
files was modified and the evaluator was rebuilt. Figure 8.9(b) shows that there were
many cache hits and only two tool invocations: one to recompile the modified source
and one to relink the evaluator executable. Because the helper program and docu
mentation sources were not changed, cache hits occur high in the call graph on those
parts of the evaluation.

This example also illustrates an interesting feature of the C and C++ bridges.
Notice that the 18 source files compiled during the scratch build of the evaluator are
arranged in two groups of nine. This is done automatically by the bridge, which is
presented with the entire list of files and divides it up. More generally, the bridge pro
duces a balanced subtree when compiling 10 or more files.17 The purpose of this bal
ancing becomes evident when we examine the incremental build graph more closely.
The single altered file is in the right-hand subtree of nine nodes, and as expected the
evaluator gets eight cache hits and one miss, which corresponds to the _run_tool
invocation. However, since none of the nine source files in the left-hand subtree has
changed, the evaluator gets a single cache hit on the entire subtree, thereby avoid
ing nine additional cache lookups. We see that, in the general incremental case, this
balanced-tree approach results in a number of cache lookups proportional to the log
arithm of the number of sources in the library or application, rather than the linear
number that would result had bridge directly compiled the flat list of sources passed
to it.

considered source code, is mechanically generated by a build, so it is a derived file from
Vesta's point of view.

17 This shows up as a characteristic "weeping willow" in the call graph; we saw a more pro
nounced one in the construction of the GC library in Figure 8.8.
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Fig. 8.9. The call graphs that result from building the Vesta evaluator package from scratch
(a) and again after one of the evaluator's source files has been modified (b). In both cases, hits
occur on the standard construction environment and the Vesta umbrella libraries.
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In Summary

In this rather detailed chapter, we have examined how the evaluator and function
cache work together to implement the machinery Vesta uses for robust, incremental
building. Fine-grained dependency analysis ensures that software components are
rebuilt only when necessary, and the function cache server enables developers across
a site to benefit from each others' builds, completely automatically. We next tum
our attention to the final component of the Vesta system that is required to make
incremental building practical, the weeder.



9

Weeder

We have seen that the Vesta evaluation machinery handles the creation and naming
of derived files automatically, without user involvement. Vesta also handles the dele
tion of derived files largely automatically. This is the province of the weeder, whose
function was briefly examined in Sections 3.1.3 and 8.6. Because derived files and
function cache entries are closely related, the weeder also manages the deletion of
unwanted cache entries, under the guidance of a system administrator. In this chap
ter, we look at the operation of the weeder in more detail, considering its design and
implementation. Performance measurements appear in Section 11.5.

In the preceding chapter, we saw in detail how cache entries are created. Since
all the data contained in a cache entry results from the deterministic evaluation of
immutable sources, a Vesta cache entry can never become invalid as caches based
on mutable data can. Consequently, deletion of cache entries is never required for
correctness; it serves only to recover disk space. It is this characteristic that motivates
the weeder's name. In a system that relies on garbage collection to reclaim storage,
there is a clear distinction between objects that are reachable from a set of known
roots and those that are unreachable and hence are garbage. But because Vesta cache
entries never become invalid, they are potentially useful indefinitely, and so are not
"garbage" in the strict sense. For this reason, a fully automatic deletion decision is
not possible, and a person must decide which cache entries are worth keeping. That
decision process is subjective - one person's flower is another's weed.

Even in the absence of true garbage collection, one could imagine a largely au
tomatic weeding process, driven by heuristic rules and triggered when available disk
space falls below a specified threshold. The heuristics might instruct the weeder, for
example, to delete all cache entries older than some specified age, or to delete all
cache entries except those created by evaluations of, say, the most recent three ver
sions of all packages in the repository. Heuristics like these might not do exactly the
right thing in all cases, but since cache entries can always be reconstructed by re
evaluation, simplicity of administration might make up for some less-than-optimal
deletion decisions.

It is indeed possible to operate the Vesta weeder in this way, although perhaps
ill-advised. Experience suggests that it is difficult to devise appropriate heuristics,
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for the rate of obsolescence of derived files varies dramatically from package to
package, making simple rules like "keep the most recent three versions" retain too
much for some packages and too little for others. So, the weeder does not have any
fixed heuristics. Rather, it provides an easy way to specify the deletion policy and
leaves it to a system administrator to determine the circumstances under which the
weeder is to be run and that policy carried out.

The weeder operates invisibly to Vesta's users, meaning that while the weeder
is running, the users can continue to build packages with no restriction on Vesta's
functionality and only minimal degradation of performance. And, while the weeder
is not invisible to the Vesta administrator, it does impose only a modest burden. In
particular, weeding can occur infrequently, the weeder does not require extensive
disk space, memory, or computation resources to do its job, and the instructions
specifying the deletion policy are simple to write.

Of course, leaving the deletion policy to a person introduces the possibility of
human error. Fortunately, Vesta's semantics make the consequences of sub-optimal
deletion rules relatively minor. If the weeder's instructions cause it to delete too few
derived files, the administrator will discover that not enough disk space has been
freed and can simply run the weeder anew with a less inclusive set of retention in
structions. This will be entirely transparent to the developers using Vesta, unless
disk space is exhausted in the interim. If the weeder's instructions cause it to delete
too much, then the developers may encounter some performance degradation, since
some builds will have to be repeated when things that the developers expected to be
cached tum out to have been deleted. But because all sources in Vesta are immutable
and immortal, and all builds are repeatable, there is never a correctness problem asso
ciated with deleting too much. In short, there is a time-space tradeoff inherent in the
weeding process. Weeding more derived files frees up more disk space, but it may
require time to recreate some of those weeded files (and cache entries) if they are
needed later. Experience indicates that finding a comfortable tradeoff, and writing
the deletion instructions to the weeder that produce that tradeoff, are not difficult.

9.1 How Deletion is Specified

The administrator provides the weeder with a set of instructions that define the cache
entries and derived files that are to be retained. To simplify the administrator's task,
these instructions describe retention at a coarse grain: package builds. So, if the
weeder is instructed to keep the build of a particular package version, it retains all
cache entries and derived files generated by that build. The input to the weeder names
package builds using a simple but powerful pattern language, similar to that of the
replicator (Section 4.3.3). The input specifies the exact versions of control-panel
models (Section 6.2.5) whose corresponding builds the administrator deems worth
keeping. It is typically short and easy to understand. Here is an example:

+ /vesta/vestasys.org/vesta/release/[LAST-l,LAST]/.main.ves
+ /vesta/vestasys.org/vesta/*/LAST/.main.ves
+ /vesta/vestasys.org/vesta/*/checkout/LAST/*/.main.ves
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The first line causes the two latest versions of releases of the yes ta packages
to be kept. The second line keeps the last checked-in version of every build of the
yes ta packages, and the final line keeps all checkout session builds of the last ver
sion of the yes ta packages. Each pattern ends in " . main. ves", meaning that
each pattern names a control-panel model on which the evaluator was invoked. Fol
lowing these instructions, the weeder keeps all derived files and cache entries created
by the specified builds.'

Note. that each line is preceded by a plus sign, indicating that the designated
versions are to be kept. The weeder's input language also allows lines beginning with
a minus sign, which removes the specified package builds from the set of builds to
keep. The input lines are processed in order; plus and minus signs may be alternated
to successively include and exclude different sets of package builds.

9.2 Implementation of the Weeder

Conceptually, the operation of the weeder is straightforward. Using the input specifi
cation of the "roots" to be kept, the weeder walks over the cache data structures per
forming a mark-and-sweep algorithm, much as a garbage collector would, to identify
the cache entries reachable (in the sense of the evaluation call graph) from the roots.
For each reachable entry, the weeder also marks the derived files that it references.
When the reachability analysis is complete, the weeder then instructs the cache and
repository servers to delete all unmarked cache entries as well as any unmarked de
rived files they reference.

Many practical considerations prevent the actual implementation of the weeder
from being this straightforward. These considerations arise chiefly from the require
ment that weeding be concurrent with normal operation of the evaluator and that
it interfere with the behavior of the evaluator and function cache as little as pos
sible from the perspective of Vesta's users. As in a concurrent garbage collector,
the data structures and mutual exclusion regime are quite subtle, with many non
obvious aspects. Moreover, the evaluator(s), cache server, and weeder all operate in
a distributed environment with the possibility of independent component failure. Ad
dressing these matters substantially complicates the weeder's implementation. This
section examines briefly how the most significant problems are handled.

9.2.1 The Function Call Graph

We consider first how the information created by the cache server - the set of extant
cache entries - is organized for the weeder. Most of the information logically asso
ciated with a cache entry is irrelevant to the weeder, and much of what the weeder

1 The weeder also accepts a command-line option that permits the administrator to specify
that any builds performed recently (for example, in the last 24 hours) should be kept. This
is a convenient "safety net" in case the pattern input inadvertently omits something built
recently.



150 9 Weeder

requires isn't needed by the cache server or evaluator. In the previous chapter, we
examined the organization of the cache from the perspective of the evaluator. To per
form the mark-and-sweep algorithm, the weeder requires a data structure that links
parent cache entries with their children. This data structure is maintained separately
from the cache entry information previously discussed.

To understand this data structure, we ignore the details of the individual cache
entries and consider the relationship among them. Conceptually, as Vesta evaluations
occur, the function cache builds up a directed acyclic graph (DAG) whose nodes
are cache entries and whose arcs correspond to edges in the evaluation call graph
(Section 8.7 has some example call graphs). That is, if the evaluation of a function f
includes a call on a function g, then two cache entries will be produced and the DAG
will have an arc from f's entry to g's entry. This graph is a DAG, not a tree, because a
node (cache entry) in the graph acquires a new parent (incoming arc) whenever a new
cache hit occurs on the entry. The roots of the DAG correspond to the evaluations of
the control panel models on which the Vesta evaluator has been invoked.

The cache server maintains the function-call DAG as an explicit data structure in
which the nodes are the cache entries stored as described in Section 8.6, while the
edges are kept on disk as a separate file called the graph log. Each cache entry is
uniquely identified by a small integer called its cache index, so the graph log edges
are represented using cache indices. In particular, each entry in the graph log contains
the index of the cache entry to which it corresponds as well as the cache indices of
each of its children. The graph log is a "log" in the sense that the cache server creates
new edges strictly by appending to the file in which the log is stored. Except during
weeding, existing edges are never deleted or altered.

Since the weeder must be able to mark for retention both the desired cache en
tries and their associated derived files, the shortids (see Section 7.1.1) of all files
referenced in a function's result value - that is, the value stored in the cache entry
for its invocation - are also stored in the associated graph log entry.2 This means
that all deriveds referenced by an evaluation can be reached by traversing the func
tion call graph corresponding to that evaluation, using the graph log data structure.

With this understanding of the graph log, we can restate in more detail how the
weeder operates. The weeder performs a mark-and-sweep algorithm using the graph
log, starting with the nodes corresponding to the roots specified in the weeder's input.
The marking phase of the algorithm builds up a set of cache entries, each identified
by a cache index, and a set of derived files, each identified by a shortid, that are
to be retained. In the sweep phase, these sets are passed to the cache server and the
repository server, respectively, which then delete all extant cache entries and shortids
not included in the retention sets. The weeder also rewrites the graph log with a
subset of its original entries corresponding to the cache entries retained by the cache
server.

2 For the most part, these are files created during a build, but it is possible for a function to
return a source file as part of its result. Such a file thus becomes both a source and a derived,
and it must be protected from weeding like any other derived.
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Of course, this description ignores the complexities of concurrent activity by the
repository and function cache servers, which we'll consider in a moment. It also
doesn't reflect the realities of performing a marking algorithm on a graph log that
may be too large to fit in main memory. That is, the marking phase cannot be imple
mented as a straightforward, depth-first walk of the DAG. Instead, the weeder per
forms a breadth-first walk by making multiple passes over the graph log. It maintains
the "marks" with a bit vector, one bit per cache entry (which does fit in memory).
Initially, the weeder sets the mark bits corresponding to the cache indices of the roots
to be retained. It also makes a snapshot of the graph log file. It then scans the graph
log snapshot serially and writes a subset of its entries to a new temporary file as fol
lows. For each input graph log entry it encounters, the weeder consults the mark bit
vector. If the bit corresponding to the entry's cache index is not set, the graph log
entry is appended to the temporary file. If, however, the input graph log entry's mark
bit is set, the weeder sets the mark bits corresponding to the cache indices of each
of its children and does not write out the graph log entry. When the entire graph log
snapshot has been read, the weeder repeats this marking process, using the newly
written temporary file in place of the snapshot. This process repeats, each time cre
ating a new (smaller) file of entries, until a scan causes no additional mark bits to
be set. This concludes the marking phase. During the sweep phase, the graph log is
rewritten, retaining from the original file only the entries whose mark bits are set.

This breadth-first algorithm can require up to d iterations, where d is the depth
of the call graph. Although d is not expected to be large (perhaps 10-20), the weeder
implements an optimization that reduces the number of iterations. Instead of writing
out the unmarked graph log entries immediately, it holds as many as possible in a
fixed-size memory buffer. Whenever the weeder sets the mark bit for a child of the
entry it is processing, it also checks the buffer to see if the graph log entry for the
child happens to be there. If so, it recursively processes the child entry and deletes it
from the buffer. In effect, the buffer turns a pure breadth-first walk of the DAG into a
"best effort" depth-first one, with the weeder descending from parent to child as far
as possible based on the contents of the buffer. When the buffer is full, the unmarked
entries it contains are written out to the temporary file. It is evident that the perfor
mance of this buffer-based algorithm depends on a space-time tradeoff: the larger
the buffer, the greater the number of entries processed per iteration, and therefore the
smaller the number of iterations required. Experience with this algorithm is reported
in Section 11.5.3

3 While this multi-pass algorithm has appealing flexibility, Moore's Law and the passage
of time since Vesta was designed have rendered it nearly unnecessary. A system size of 20
million source lines (page 30) and some conservative assumptions about cache maintenance
suggest a cache size of about 10 million entries. If a graph log entry averages under 1,000
bytes, then the entire graph log will fit in the memory of a modem server. This suggests
that for a system of the size Vesta targeted, the multi-pass mark-and-sweep algorithm is
perhaps no longer needed. On the other hand, during the same passage of time, software
systems have continued to grow in size, and there are contemporary systems whose size
significantly exceeds Vesta's original design target. To accommodate them today, the graph
log would again strain memory capacity and necessitate using the multi-pass algorithm.
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9.2.2 Concurrent Weeding

We turn now to the concurrent interactions of the evaluator, cache server, and weeder.
We noted above that the weeder's operation must interfere as little as possible with
ongoing evaluations. This means that a simplistic "stop the world" approach, as is
used in some garbage collectors, is unacceptable, for it would prevent evaluations
from making progress for many minutes or even hours. The weeder does not "lock
out" the evaluator and cache server; they continue to operate nearly normally. How
ever, the weeder achieves roughly the same effect as if it had been able to suspend
all evaluations, even though it executes concurrently with them. The effect is as if
there were a "critical moment" at which the weeder instantaneously examines the
state of the cache server and all evaluations, and any cache entry that is not reachable
either from a specified root or from a cache entry in use by an evaluation at that mo
ment becomes a candidate for subsequent deletion. Since the weeder cannot do this
instantaneous state examination and processing, the challenge in the weeder's imple
mentation is to achieve that effect while coping with complications of the changing
cache state. In this section we consider the most significant of these complexities.

Because the cache server and evaluator(s) continue to execute in parallel with
the weeder, they continue to create new cache entries and to access existing ones.
The weeder must arrange not to delete any of these entries, else chaos will result.
This means that, in addition to marking the cache entries reachable from the spec
ified roots, the weeder must also mark for retention any cache entries created or
accessed by evaluations in progress while the weeder is running, as well as all their
descendants. Obviously, newly created cache entries won't appear in the graph log
snapshot that the weeder makes when it begins executing, so an alternate mechanism
is required to identify them." Moreover, an ongoing evaluation can get a cache hit on
an entry that is not reachable from any of the designated roots, and the weeder needs
a way to detect and retain such entries as well (along with all of the entries reachable
from them).

Vesta employs a single mechanism for both cases, leases [21,44]. A lease is an
agreement between two or more parties that remains valid up to a prearranged time
even if the parties are not in active communication. Here, the parties involved are the
evaluator, the cache server, and the weeder, and the entities being leased are cache
entries. The agreement among the parties is that a lease on a cache entry is quite
literally a lease on life; that is, while a lease on a cache entry is in effect, the cache
entry may not be deleted. More precisely, the lease protects from deletion the cache
entry, the derived files on which its result value depends, and all of its descendants.

4 At first blush, it might seem that no alternate mechanism is needed, because the cache
server could adopt the simple rule that, regardless of the weeder's deletion instructions, it
won't delete anything appended to the graph log after the weeder has taken its snapshot.
While this would certainly prevent a newly created entry from being deleted, such an entry
can have a pre-existing one among its descendants, which might not otherwise be marked
by the weeder. The descendant would therefore be identified for deletion, but that would
violate the requirement to retain any cache entry needed by an ongoing evaluation.
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Intuitively, a cache entry acquires a lease when it is used by the evaluator, indi
cating that it is of interest to an evaluation in progress. Thus, a newly created cache
entry automatically acquires a lease at "birth". Additionally, whenever a cache hit
occurs on a cache entry, the entry acquires a lease. If it already had a lease, the lease
is renewed, meaning that its expiration time is extended as if it had been newly cre
ated. Thus, when a cache entry is created, all of its children are leased, since each
one was either newly created or the result of a cache hit. Leasesexpire after a fixed
time, unless they are renewed, either by a cache hit or explicitly by the evaluator.
(The latter is rare, but can happen in a long-running evaluation.l)

In order to respect the leasing agreement, the weeder must discover, at some
point before it completes its marking phase, which cache entries have leases. The
cache server provides this information to the weeder (as a bit vector, indexed by
cache index), and the weeder then repeats the same marking algorithm that it used
on the original graph log snapshot, this time using the leased cache entries as the
"roots" for the marking. When the marking is completed, the weeder instructs the
cache server to delete all unmarked cache entries contained in the original graph log
snapshot.

While closer to the truth than the single mark-and-sweep algorithm of the pre
ceding section, the algorithm just outlined still does not deal completely with the
asynchronous behavior of the evaluator/cache and the weeder. As we noted above,
because the cache server and the weeder are running concurrently, additional cache
entries can become leased while the weeder is running. In particular, this can happen
after the weeder has begun its second marking pass. The weeder will be unaware of
such entries and therefore may fail to mark them for retention, thereby defeating the
whole purpose of having leases.

This is a fundamental race, and the interactions between the cache server and the
weeder required to address it are complex and subtle. As we examine them, it will
help to keep the following invariants in mind, which formulate more precisely the
informal statement of the weeder's actions: to preserve all cache entries associated
with the specified roots and ongoing evaluations. These invariants are expressed in
terms of a particular significant instant during the weeding process, denoted by tc-

11 A cache entry identified as a root in the input supplied to the weeder is retained,
as are all its descendants.

/2 A cache entry created after tc is retained.
/3 A cache entry leased at tc is retained, as are all its descendants.
/4 A cache entry created before tc that becomes leased between tc and the comple

tion of weeding must have been identified for retention before t.,

The first three invariants follow intuitively from the description of the intended ef
fect of the weeder. The final one is less evident, but fundamental. It establishes a

5 The evaluator must ensure that leases on cache entries don't expire while it is using them.
This suggests that the lease duration should equal or exceed that of the longest conceivable
evaluation. Parameters of this sort are notoriously fragile; instead, the Vesta evaluator in
cludes the necessary machinery to renew leases when necessary, permitting an evaluation
to run indefinitely.
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window of time during which a certain set of pre-existing unleased cache entries
cannot become leased. These cache entries are then candidates for deletion.

With this background, we can now look at the actual weeder algorithm.

1. The weeder tells the cache server to suspend lease expiration until further notice.
2. The weeder snapshots the graph log and records the set of all cache indices in

use, Cu.
3. The weeder carries out the marking algorithm of Section 9.2.1, using the roots

supplied as input to the weeder. This algorithm produces C; the set of cache
indices for entries reachable from the specified roots.

4. The weeder computes H == C« - Cr , the set of unmarked cache indices, and
passes it to the cache server. The cache server establishes H as a hit filter, mean
ing that, until otherwise instructed, the cache server forces a cache miss on an
unleased cache entry whose index is in the hit filter. (The moment at which the
hit filter takes effect is t.; which we demonstrate below.)

5. The weeder obtains from the cache server the set of cache indices for leased
cache entries.

6. The weeder tells the cache server to resume lease expiration.
7. The weeder performs the marking algorithm on the graph log snapshot, using

the leased entries obtained in step 5 as the roots. This algorithm produces C/, the
set of cache indices for entries reachable from the leased cache entries.

8. The weeder computes D == H - C/, the set of unmarked cache indices remaining
after the preceding step, and passes it to the cache server, instructing it to delete
them and then discard its hit filter.

9. The weeder writes a new graph log consisting of the subset of the snapshot en
tries whose indices are in Cr U C/, plus any entries that were added to the graph
log since the snapshot was taken at step 2.

We now sketch how this algorithm maintains the four invariants. The notation t,

refers to the time at which the ith step in the algorithm begins. It is easy to see that
C, is the set of all cache entries specified as roots to the weeder, plus all of their
descendants. Since D, the set of entries that is deleted, excludes Cr , invariant II is
established. Establishing /2 is equally straightforward, since D is a subset of Ci; the
entries in the graph log snapshot, so an entry created after the snapshot is made will
not be deleted. To see how /3 is established, consider the set of cache entries obtained
by the weeder at step 5. Since lease expiration is disabled between t2 and t6, this set
contains the set of leased entries at t.. Hence the set C/ computed at step 7 includes
the set of cache entries leased at te and all their descendants, as required by invariant
13.

Establishing 14 is more involved. Consider a cache entry created before te that
becomes leased between te and the completion of weeding after step 8. If it had
been created after ti. its cache index would not be in Cu, and hence the entry would
implicitly have been identified for retention at t., since only the entries corresponding
to a subset of Cu (namely, D) will be deleted. Therefore, the entry was created before
t: and its cache index is then in Cu. Now suppose the cache index is also in H, the hit
filter. Then, the entry cannot have become leased between t, and the end of weeding,
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since during this interval the cache server would force a miss on the entry. Therefore,
the entry's index is in Cu - H, or Cv, which is precisely the set of cache entries marked
for retention before t., This establishes /4.

This informal proof sketch shows that the weeder algorithm maintains the invari
ants, but the invariants do not actually specify what is to be deleted. That is, although
they specify what is to be retained, they do not prohibit additional entries from being
retained. The weeder is permitted to do this, but it must maintain another invariant:
everything referenced by a retained cache entry must be retained. More formally, we
must show that after weeding is complete and the set D of cache entries has been
removed, no retained cache entry has a descendant in D.

Let C be the set of cache entries at the moment that deletion begins, and let D
be the set of cache entries to be deleted, as defined in step 8 of the algorithm. For
a cache entry e, let children(e) denote the set of cache entries that are immediate
descendants of e. We want to show that tie E C - D: children(e) nD == 0.

Assume e E C -D, so e f/:. D. Since D == H -Cz == Cu-Cr -Cz == Cu- (CrUCz),
either e E C; UCz or e f/:. Cu.

1. e E C;U Ci. Suppose e E Cr.By the definition of C: children (e) C C, and hence
by the definition of D, children(e) nD == 0. The reasoning for e E Ci is similar.

2. e f/:. Cu' Since Cu is the graph log snapshot, e must have been created after ti

There are two cases.
a) If e was created at or before t., then since lease expiration was disabled

between t: and t.; e must be leased. Therefore, children (e) C Ci and by the
definition of D, children(e) nD == 0.

b) If e was created between te and t8, then for each e' E children (e) there are
three cases.

i. If e' was created after t5, then e' f/:. Ci; so e' f/:. H, the hit filter. Since
D c;. H, e' tj D.

ii. If e' was created between t2 and t5, its lease cannot have expired by t5

and it therefore must be in Cz. By the definition of D, e' t/:. D.
iii. If e' was created before ta. then e' E C; If e' E Cr , then by the definition

of D, e' t/:. D. Since e' t/:. Cr , then by the definition of the hit filter, e' E H.
Now, e' must be leased no later than the time e was created, which by
assumption is after tc . This is because the evaluator ensures that when a
cache entry is created, all its children are leased. If e' was leased before
t.; then its lease cannot have expired by t5, so e' E Ci and therefore
e' tj D. If e' did not become leased until after tc (but before e becomes
leased), then it must be the result of a cache hit at that moment. But
this is impossible, since e' E H and the hit filter prevents cache hits on
unleased entries it includes.

The forgoing presentation of the weeder's algorithm focuses on the retention and
deletion of cache entries, but the weeder must arrange for deletion of derived files
as well. This essential detail is easily added. As the weeder marks cache entries for
retention in steps 3 and 7, it accumulates the shortids of their associated derived files.
Following step 8, the weeder instructs the repository server to delete any derived files
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created before weeding commenced that are not included in the set of shortids it has
built up. It is easy to see that these actions retain all the derived files associated with
cache entries in C - D.

A number of additional complexities of the weeder's implementation have been
omitted from this brief discussion. Naturally, the weeder must be able to recover
gracefully from failure of itself or of the cache server at any point in the course of its
execution. In some cases this is handled by restarting, in other cases by forward error
recovery. The latter is necessary once the deletion phase has begun. These details
are essential for a robust system, but they use well-known techniques and so are not
further elaborated here.

In Summary

The Vesta weeder, while essentially invisible to the users of the system, performs an
essential role in implementing the automatic management of derived files. This fea
ture of Vesta greatly simplifies the use and administration of the system, since users
never need to know or manage the name space of derived files, and administrators
can, with a few simple lines of input to the weeder, arrange for coherent reductions
in storage consumption.



Part IV

Assessing Vesta



Parts I-III presented the overall design of the Vesta configuration management sys
tem, its functionality as seen by a user, and many aspects of its implementation.
This final series of chapters assesses Vesta in several ways. Chapter 10 surveys com
peting configuration management systems and qualitatively examines their relative
strengths and weaknesses. Chapter 11 quantitatively evaluates Vesta's performance
and how it compares to the most widely used system-building tool, Make. Finally,
Chapter 12 concludes with a reflection on Vesta's goals and the extent to which they
were achieved, as well as the practical impact of the system to date and its potential
future.



10

Competing Systems

Virtually every organization with a large code base uses a collection of software
tools to build and manage it. Sometimes an organization develops its own custom
set of tools, but more often it satisfies its software configuration needs by acquiring
software externally. In the latter case, the configuration management solutions fall
into two broad categories: loosely connected individual tools and tightly integrated
suites. In this chapter we will look at representatives of both types. Our purpose in
examining these tools is to understand how they differ from Vesta and to identify
ways in which their functionality is lacking.

10.1 Loosely Connected Configuration Management Tools

Probably the majority of development organizations use a loose combination of tools
to address their software configuration management needs. In general, each of these
tools is designed to work to a considerable extent in isolation, solving a particular
part of the "SCM problem" (see Chapter 1). While they may be cognizant of other
tools and include functionality intended to facilitate interconnection with them, these
tools cannot be considered integrated to the extent that Vesta or the other systems
designed to address the overall SCM problem are. Most of these tools were originally
developed for small-scale systems of perhaps a few hundred thousand source lines.

Representative of the most common SCM tools in use today are RCS (the Re
vision Control System) [59,60], CVS (the Concurrent Versions System) [23], and
Make [18]. They are often used together, with RCS or CVS handling version man
agement and source control, and Make handling system description and building.
We have briefly touched on these systems, especially Make, in the preceding chap
ters; we now look at them in more detail. All are widely available on both Unix and
Windows platforms.
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10.1.1 RCS

RCS is a tool for storing and managing multiple versions of individual source files.
A file's version history can branch into an arbitrarily complex tree. RCS provides
locking to enforce source control, and includes tools for merging changes made by
different developers.

RCS stores multiple versions of a source file in a single disk file, in a way that
avoids duplicating material that is common to more than one version. This technique
saves disk space, but makes the individual versions inconvenient to access, since a
particular version cannot be read directly and must first be extracted into a separate
file. In a modem computing system, the benefits of storing multiple versions of a
source file compactly are slight, since the disk requirements of most development
environments are dominated by the space consumed by derived files. (Data in support
of this observation appears in Section 11.3.2.) Moreover, the price of disk space has
been dropping exponentially for years and continues to do so, while the growth in
the rate of source file production is much more gradual.

In place of RCS, some organizations use SCCS (the Source Code Control Sys
tem) [53], an older but essentially similar system.

10.1.2 CVS

One disadvantage of both RCS and SCCS is that source files are versioned individu
ally; these systems provide no coordinated versioning across related files. Although
RCS provides mechanisms for tagging a group of versioned files, those mechanisms
are manual and error-prone. CVS attempts to remedy this problem. CVS is a front
end to RCS that extends the notion of version control from individual files to arbitrary
directory trees called modules. In CVS, the unit of check-out is an entire module.
Hence, it is easier to work on a group of related files with CVS. A drawback is that
whenever a user checks out a module for the first time, all the files are copied from
shared storage to a private workspace, which can be slow.

Another important difference between CVS and the other systems is that CVS
does not use locking to enforce source control. Instead, it uses an optimistic concur
rency control model in which each developer is free to modify a copy of any source in
the central repository at any time. CVS includes a facility for mechanically merging
changes made by other developers into one's own source tree. Developers typically
apply this facility just before checking in their own changes, without giving much
thought to whether the two sets of changes are compatible. The assumption is that if
the changes do not both affect the same region of the same file, there is no problem.
Changes in the same region are reported as conflicts, and the developer is required
to fix them before checking in. But if two developers make semantically conflicting
edits to different files, or even to distinct portions of the same file, these conflict
ing changes are not reported. Despite these dangers, some organizations prefer the
CVS approach to concurrency control, which permits looser coordination than the
check-out, check-in approach used in Vesta.
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A related problem with CVS's concurrency control is the lack of atomic oper
ations on the CVS repository. If user A is checking in a module while user B is
checking it out, B may get some but not all of A's changes. Hence, there are time
windows in which users can see inconsistent versions of files in a CVS module.'

10.1.3 Make

The functionality and behavior of Make was discussed in Section 2.5. In its myriad
variants, Make is perhaps the most widely used system description and building tool
and, as such, the natural point of comparison for any other software configuration
management system that includes building functionality.

Recall that the input to Make consists of Makefiles, which specify the depen
dencies between the components of a software system and provide instructions for
building them. When it is run, Make examines the dependencies and rebuilds any
components that are out of date. Developers like Make because the Makefile syntax
is simple (if a little cryptic), the tool is fairly easy to use, and, as a fairly general
purpose engine, it can be adapted to other tasks besides building software in which
programmable actions must be carried out on the basis of dependency relationships.

The most serious problems with Make are that (1) it does not maintain dependen
cies automatically, and (2) many dependencies are simply inexpressible or too costly
to express in practice [19]. Because the dependency relation for a large software sys
tem is complicated and changes frequently over time, one can easily specify too few
or too many dependencies. Excess dependencies can lead to unnecessary work being
done during a build, while insufficient dependencies can lead to inconsistent builds.

To alleviate the first problem, many organizations employ tools that compute
dependencies automatically from source files and alter the dependency relation en
coded in the Makefile. A widely used tool in this category is Makedepend. How
ever, Makedepend suffers from at least two deficiencies. First, it detects only certain
kinds of dependencies, namely, dependencies between C/C++ source files and any
files directly or indirectly included by them. Second, there is no mechanism to run
Makedepend automatically when dependencies change. Since Makedepend can take
a substantial amount of time to run, developers tend not to use it routinely, relying
instead on their intuition about whether dependency relationships have changed. Of
course, this is risky and error-prone, since the failure to run Makedepend can result
in an inconsistent build, which is precisely the problem it was created to solve.

The second problem - the impossibility or cost of expressing dependencies in
a Makefile - has not been addressed by auxiliary tools in the Make marketplace.
As a result, even if a development organization religiously uses Makedepend, its
Makefiles rarely if ever capture all the dependencies on the environment. For exam
ple, every derived file produced by a Makefile depends on the building instructions
in the Makefile itself, but developers typically omit this dependency. Were they to

1 Some vendors of CVS-based systems have made check-ins atomic, but not all. In particular,
non-atomic check-in is a documented property in the release of CVS current as of this
writing, which is version 1.12.11.
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include it, they would find every derived file being rebuilt every time the Makefile
changed, which is of course excessively conservative and a big time-waster. How
ever, by omitting the dependency, developers must instead manually invalidate or
delete those derived files that are affected by a Makefile change, an error-prone pro
cess in itself. There are many other dependencies that are cumbersome or impossible
to specify in Make, including dependencies on the particular versions of tools (com
pilers and linkers) that a software system requires, on command-line switches, and
on environment variables.

Make is a stand-alone tool, meaning that it is not integrated with version man
agement tools such as those discussed above. The lack of integration manifests itself
in two important respects. First and most obviously, the sources to be built must be
explicitly extracted (checked out) from the version management software's reposi
tory before they can be built, since they cannot otherwise be named as ordinary files
in the underlying file system. In an attempt to provide some integration along these
lines, some variants of Make have machinery to perform ReS check-outs on miss
ing source files, but this facility is quite limited and clearly not a general solution to
the problem. Second, explicit source versions are not specified in Makefiles, since
Make and the underlying file system on which it depends have no concept of a file
version. This means that Make provides no configuration management support; it
does not enable developers to specify which source versions go together. Instead, it
becomes the developer's responsibility and burden to check out the correct versions
of all components before performing a build, a laborious and error-prone process if
one is not building the latest version.

Make also fails to scale well. A large software system can be specified by a
hierarchy of Makefiles, in which one Makefile invokes Make recursively on other
Makefiles. However, there are some substantial problems with such an arrangement.
The complete tree of system components must be checked out before building, for the
reasons described in the preceding paragraph. More seriously, the recursion always
has to be completely carried out; that is, when Make is invoked on the root Makefile,
it must run all the way down to the leaves of the dependency tree to check for stale
dependencies. Because Make uses file timestamps to test whether a derived file is up
to date, the test for stale dependencies requires Make to determine the last-modified
time of every source and derived file comprising a system. Although some of these
timestamps may be cached by the file system, they often require network round
trips to file servers and/or disk reads. Thus, Make's dependency checking can be an
extremely time-consuming process for multi-million line software systems. All the
dependency checks are required even if the entire system to be built is up to date.
By contrast, Vesta can determine, with a single cache hit, that a subtree of a large
system need not be built. Make's inability to do so cripples its performance for large
systems, and the larger the system, the worse the problem becomes.

Finally, Make's reliance on last-modified times can lead to inconsistent builds
in several ways. A common instance of this problem arises when building an older
version (not the latest one) of a system. When the old source versions are checked out
(that is, extracted from the version control system), they frequently have timestamps
that precede the timestamps of the latest ones and therefore also tend to precede the
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timestamps of the derived files from the most recent build. Hence, Make's simplistic
comparison strategy causes it to conclude that the derived files are up to date. The
developer's only safe recourse is to delete all of the derived files, thereby forcing
Make to build the system from scratch. This is more drastic than is typically needed,
and wasteful of the developer's time. Yet the use of last-modified times affords no
other options.

Bell Laboratories' Nmake [19] addresses most of the problems with Make that
we have just discussed, along with others, though it does not fully solve them. For
example, Nmake includes a built-in static dependency generator that does its own
parsing of source files looking for #inc1ude statements in C code. This greatly
reduces the likelihood of omitted dependencies, but the dependencies generated can
be overly conservative, increasing the amount of rebuilding work needed. Moreover,
new parsing support has to be written whenever Nmake is used on code written in
a new language. Nmake includes an improved timestamp-checking algorithm that
fails only when an erroneous system clock gives two different versions of a file the
same timestamp, and it caches timestamps and other state information in order to
speed up its dependency analysis somewhat. These improvements eliminate the most
common pitfalls in applying Make to large system builds, but they do not help with
the fundamental scalability problems.

10.2 Integrated Configuration Management Systems

Integrated configuration management, in contrast to the systems we have just ex
amined, tightly couples the functions of version management and system building.
This integration sometimes extends further, perhaps even encompassing the entire
development environment. For example, a language-specific editor and incremen
tal compiler may be tightly connected with each other and with the versioning and
building tools. Many such language-specific systems have been built. For the present
discussion, however, we consider only systems that support, at least in principle,
language-independent development while replacing individual software configura
tion tools with integrated management functions.

10.2.1 DSEE

Perhaps the first widely known system to integrate versioning and building outside
of a specific language context was the DOMAIN Software Engineering Environment
(DSEE), which effectively addressed many of the problems with Make and loosely
connected version management systems [37,38].2 For source control, DSEE used a
custom file system that allowed individual versions of source files to be named di
rectly; no separate check-out step was required. However, the tools (including the
builder) did not generally traffic in explicitly version-numbered files. Instead, files

2 Although DSEE was widely known in academic circles, its availability was limited to
Apollo platforms.
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were named without version numbers, and each developer could control the binding
of these names to specific versions of files in the file system. The means of control
ling this binding was called a configuration thread and was effectively a list of rules
for translating unversioned names into versioned ones. The rules were quite flexible
and permitted various styles of development. Indeed, DSEE's designers character
ized development styles as "cautious" and "dynamic" [37], the former being one in
which the configuration thread isolates the developer from changes made by others
by using binding rules that specify only files under the developer's direct control. A
more "dynamic" rule might be "use the checked-out version of file F if one exists,
otherwise use the latest version on the main branch of the development tree." Obvi
ously, such a rule could cause the binding of a name to change if another developer
checks in a file on the main branch. Dynamic rules like this can become problematic
as the number of developers working simultaneously on a system increases, since
the potential for unexpected "rebinding" increases as well, causing one developer's
build to break as a side-effect of another's check-in action.3

For building, DSEE read system models that enumerated the sources to be built,
their dependencies (e.g., header files), and the build rules for constructing the soft
ware. DSEE provided automatic derived file management and the capability for the
derived files produced by one build to be reused in another. Unfortunately, the DSEE
papers do not describe the system modeling language in any detail, nor do they dis
cuss either the consistency guarantees or the performance characteristics of build
ing with derived reuse. Nevertheless, these overall characteristics significantly influ
enced Vesta's designers, and the inclusion of related concepts and mechanisms in
Vesta reflect their use in DSEE.

In addition to version management and software construction facilities, DSEE
also included work-flow facilities required by the broader software engineering pro
cess. For the most part, these facilities were independent of the configuration man
agement facilities described above, but there was a small degree of integration be
tween them. For example, checking in a source module might cause a task on a task
list to be recorded as being completed. DSEE also included a facility for specifying
human-sensible semantic dependencies between sources. For example, the depen
dence between a program's interface code and its documentation might be recorded
as a semantic dependency. Whenever the program's interface was modified, a tech
nical writer would be informed of the need to update the documentation.

3 DSEE also incorporated the notion of a bound configuration thread, essentially a snapshot
of the binding computed by a configuration thread at a given instant. A bound configuration
thread provides the ultimate in cautious development, as it binds all unversioned names to
explicitly versioned ones, but it does not appear to have been used for this purpose in DSEE.
Rather, it seems to have been used chiefly for keeping an archival record of the versions
used in a particular build. The files and import clauses of Vesta system models are
quite similar to DSEE's bound configuration thread or, more precisely, to configuration
threads that restrict themselves to rules that include explicit version numbers. In fact, these
Vesta notions were originally inspired by DSEE, though they found their way into Vesta
via at least two intermediate systems, including Cedar [35].
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10.2.2 ClearCASE

In the early 1990s, the DSEE developers started a company to build ClearCASE [4],
a commercial SCM system based on the DSEE philosophy but not tied to the Apollo
platform. The company was subsequently acquired by Rational Software Corpora
tion and, more recently, by IBM. ClearCASE is probably the best known integrated
software configuration management system.

ClearCASE's source control mechanism is quite similar to DSEE's. In Clear
CASE, the configuration threads are called views, but the idea is exactly the same;
rules are used to map unversioned file names to particular source versions. Clear
CASE views are implemented by a custom multiversioned file system that plugs into
the operating system's file system switch. As in DSEE, looking up a file in a Clear
CASE view requires some form of database access to translate the unversioned name
to a versioned one, which introduces some overhead on file opening operations.

ClearCASE differs from DSEE in two important respects. First, ClearCASE is
more portable; it runs on both Windows and Unix systems. Second, ClearCASE is
Make-based. That is, ClearCASE system models retain the syntax and semantics
of Make. However, ClearCASE includes an alternative builder, ClearMake, that cor
rects many of Make's problems. In particular, ClearMake includes a mechanism that,
during a build, automatically records the file dependencies and results of each exter
nal tool invocation (e.g., compilers and linkers). These cached dependencies and
results are then used during subsequent builds to bypass tool invocations if the speci
fied files are unchanged. ClearMake can therefore perform more reliable incremental
builds than standard Make since it does not depend for correctness on manually cre
ated dependency information. However, build-order dependencies and dependencies
on files outside of ClearCASE's control must still be listed explicitly.

Although the quality of dependency checking has improved in ClearMake, it is
no faster than in standard Make. Only invocations of external tools are cached so, just
like Make, ClearMake builds programs upwards from the leaves, rather than down
wards from the root. As we noted above in the discussion of Make, this approach has
serious performance problems in building large systems."

One advantage provided by ClearMake over standard Make is that derived files
are managed by the system and can be shared, enabling developers to benefit from
each other's builds. However, ClearCASE uses heuristics to select the candidate de
rived files for sharing, so the specific cases in which such sharing is possible are not
evident. It is possible for the heuristics to fail to select a valid candidate for sharing,
in which case an unnecessary tool invocation will occur. In Vesta, these events corre
spond to false cache misses and, because of the considerable pains Vesta takes in its
fine-grained dependency analysis (Section 8.4), they are quite rare. More seriously,
ClearMake does not automatically capture all dependencies that affect building, so
it can occasionally produce an inconsistent result. In Vesta, dependency detection is
automatic and complete, so inconsistent builds cannot occur.

4 In Vesta parlance, the approach used by Make and ClearMake is analogous to caching
only _run_tool calls. Section 11.2.3 shows that much better performance is achieved by
caching larger units of work.
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The ClearCASE MultiSite product supports replication of ClearCASE source
repositories across multiple, geographically distributed sites [3]. Vesta's approach to
replication (Section 4.3) differs sharply from that of ClearCASE. In ClearCASE, the
choice of what to replicate is made at a coarse grain - an entire Versioned Object
Base, of which there are typically only one or a few per site. In Vesta, one can choose
what to replicate down to the level of individual versions of software packages, if
desired. ClearCASE replicas exhibit eventual consistency - that is, an update al
gorithm is used that would eventually make the replicas identical if they all were
to stop changing for sufficiently long - but there are no clear guarantees on what
differences can exist between replicas when changes have been made recently. Vesta
defines a simple, flexible notion of consistency for its replicas that takes advantage
of the fact that sources are immutable once they have been added to the repository.
ClearCASE's replica update algorithm is operation-based and requires knowledge of
the full set of replicas. That is, each ClearCase replica must keep a history of re
cent operations that have changed it and for each other replica keep track of which
changes have not yet been propagated. Vesta's algorithm is state-based and works
when the set of replicas is unknown and changing; the replication tool simply com
pares the states of two replicas, copying any data from the first that is missing and
desired in the second. The ClearCASE approach has some advantages; in particular,
fewer administrative decisions are required as to what to replicate, and the operation
based approach to updates should scale better when replicas share a great deal of data
but very little is changing. However, the Vesta approach is much simpler, provides a
clearly defined level of consistency, and supports usage patterns where the replicas
are more loosely coupled.

10.3 Other Systems

In this chapter, we have surveyed only a few representative (and, generally, widely
known) software configuration management tools and systems. Numerous others are
described in the research literature, or are distributed commercially, or are available
as open source [2,5,8, 14,41,42,45,46,51,58,61]. Many of these systems do their
version management and source control using paradigms very similar to those of
RCS or CVS, and a great many handle system modeling and building using versions
of Make with various improvements. Thus, although RCS, CVS, and Make are now
very old tools, they still represent of the state of the industry. This is not to imply
that other aspects of software configuration management have not advanced. Indeed,
commercial systems often have sophisticated features for bug tracking, workflow
management, high-level project dependencies, and graphical user interfaces that go
beyond the scope of what is included in Vesta, while the research and open source
systems explore a wide variety of ideas in these and other domains.

Although the RCS/CVSlMake paradigm is dominant, there are some notable ex
ceptions, especially in version management. Several systems name and manage the
sets of changes in a software system rather than complete versions of the system
itself [8,45,46]. A motivating idea behind change sets is that users can synthesize
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many different versions of a system by mixing and matching various change sets.
It is hard to see the practicality of this idea, since changes from different sets seem
quite likely to conflict with one another. Another notable difference in version man
agement appears in systems that assign a version identifier to every object in a hier
archical directory tree, including the directories themselves [41,42,61] (and there are
even more complex models for version management [17]). While these approaches
have some intellectual interest, they impose a cognitive burden on the user that Vesta
avoids and whose necessity is doubtful.

Finally, there is the SCM approach taken in integrated development environ
ments, such as Microsoft's Visual Studio. These environments attempt to bring all
phases of the development process beginning with the creation of code under one
roof, with tight integration of editor, compiler, debugger, performance analysis tools,
versioning, building, and configuration management. These systems provide a pro
ductive environment for small-to-medium sized programming projects, whose con
figuration management needs are generally modest. The philosophy of these environ
ments emphasizes an "edit, then run" approach, with the machinery for compilation
and linking being hidden from the user. While obviously attractive when it works,
this approach does not scale well. It breaks down when simple heuristics fail to ad
dress the realities of version selection (say, in an organization with parallel threads
of development), multi-platform deployment, control over compilation options (such
as optimization levels) or library selection (for example, performance-based alterna
tives), distributed development (and the requisite replication of the code base), etc.
In short, these systems address an important class of software development, but they
do not address the problems that Vesta specifically targets.
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Vesta System Performance

Throughout the preceding chapters, we have focused on the "what" and the "how"
of Vesta in order to show that, as a tool, Vesta provides the developer with essen
tial functionality for large-scale software construction. In this chapter, we look at
Vesta's performance. We will see that Vesta's functionality comes at no loss (and
sometimes a gain) in performance when compared to Make, the most widely used
alternative, and that it is practical to deploy Vesta's server-based facilities in support
of a large development organization. The measurements presented here therefore as
sess resource usage on client machines (the evaluator and runtool server), on server
machines (the repository and cache servers and the weeder), and on the network (the
remote procedure call library used for client/server communication).

First, however, an important caveat. Vesta was designed to scale to handle the
construction of very large software systems (see page 30), but at the time the mea
surements in this chapter were taken, no software system approaching the design
target was under development in the Vesta environment. Thus, the measurements
presented here do not directly validate the implementation within its design center.
Instead, we must settle for measurements on smaller systems and extrapolate.

On the one hand, this is obviously less convincing than measurements on a
production-scale system would be. Measuring the cache server on a cache of 10,000
entries doesn't directly provide any intuition about performance of the server on
its design target of 1,000,000 entries. On the other hand, since these measurements
were taken, Vesta's user community has grown substantially. At one installation,
over 300 developers are using it to manage a multi-million line code base. This is
much closer to the design target established for Vesta. Anecdotal evidence indicates
that the system has performed well, and that the bottlenecks that have arisen have
not resulted from fundamental limitations but rather from implementation shortcuts
that made sense in a prototype system. There is reason to hope that, with an open
source community now supporting Vesta, some of these deficiencies will eventually
be corrected.'

1 For example, the repository server is implemented entirely as a user-level process. This
creates inefficiencies for the NFS server that could be eliminated if it were included in
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In this context, we examine measurements of Vesta's behavior on small to
medium-sized systems and project, qualitatively, how they would change for larger
systems.

11.1 Platform Configuration

The measurements described in this chapter were performed with a typical Vesta
system configuration, in which the evaluator and runtool server run on a single client
machine, and the repository and function cache run on a single server machine. For
the experiments involving Make, execution of Make occurred on the client machine,
accessing a file server running a standard in-kernel NFS version 3 implementation.
In both sets of experiments, the underlying files being served by the repository and
NFS3 servers were mounted on a local Digital AdvFS file system using two directly
attached Digital RZ28 SCSI disks.

The client machine used in these tests was a Digital AlphaStation 500 5/333,
with a 333 MHz CPU and 192MB of memory. The server machine was a Digital AI
phaStation 400 4/233, with a 233 MHz CPU and 192MB of memory. Both machines
ran versions of Digital's Tru64 Unix. The two machines were connected by AN2, a
custom, switched local-area network with 155 Mbps links. AN2 was a prototype of
Digital's GIGAswitch/ATM high-bandwidth ATM network.

Obviously, these machines are several generations old and not representative of
current hardware. They were the current technology in the late 1990's when the mea
surements reported in this chapter were taken. One would naturally expect the ab
solute performance for both Vesta and Make to be substantially better on modem
hardware (and this is borne out anecdotally).

11.2 Overall System Performance

This section presents measurements of the overall performance of the Vesta system,
as seen by a user. Here's a summary of the results:

• We compare the performance of Vesta against that of Make [18]. The measure
ments show that Vesta outperforms Make on both scratch and incremental builds.
Moreover, in the most common case - an incremental build in which a small
number of files are recompiled - Vesta substantially outperforms Make. This
improved performance comes despite the fact that Vesta provides considerably
stronger consistency guarantees than Make does.

• We present more detailed measurements of Vesta's client performance. The mea
surements show that the Vesta caching machinery performs quite well. The cost
of incremental builds is indeed proportional to the magnitude of the change, not

the kernel. The implementers knew this when they initially developed Vesta, but at that
time the convenience of development outside the kernel easily outweighed the inevitable
performance hit.
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to the total size of the software being built. The measurements also confirm that
Vesta spends most of its time in .run.t.oo l calls, indicating that the overhead
induced by the evaluator and function cache is low.

• We characterize the memory usage of the evaluator and the runtool server - the
two Vesta processes that generally run on client machines. The measurements
show that the run-time memory consumption of these processes is reasonable
and that Vesta does not compromise the performance of the other applications on
the client machine because of its memory consumption.

The first two sets of measurements, which compare Make and Vesta, consist
of three tests. The Hello test requires compiling and linking a toy "hello world"
program. The Evaluator test requires building the Vesta evaluator, which in tum
requires building all of the Vesta libraries used by the evaluator. The Release test
entails building the entire Vesta release, which includes building all of the Vesta
libraries, server programs, utilities, and test programs.

Table 11.1 summarizes various attributes of these three tests. The figure for total
source lines includes all the C, C++, and header files in the Vesta implementation.
The figure for the number of modules counts only the C files, not the header files.
The number of .zun.t.oo l calls reported in the table is the number of times an ex
ternal tool invocation is required during the test; it includes invocations of compilers,
linkers, and archivers.i Finally, the number of packages reported is the number of
separate packages comprised by the sources.

Total Number of Number of Number of
Test Source Lines Modules Runtools Packages
Hello 10 1 2 1
Evaluator 53,304 103 117 11
Release 119,602 255 333 16

Table 11.1. Sizes of the Three Build Tests

To reiterate, even the largest test's size is well below that of the software sys
tems for which Vesta was designed. In interpreting the results of these measurements
later in this chapter, we consider how to extrapolate from this data to assess Vesta's
scalability.

11.2.1 Performance Comparison with Make

As we examine the performance of Vesta and Make for both scratch and incremen
tal builds, it is important to keep in mind exactly what we are comparing. Sec
tion 10.1.3 noted that Make does not always build consistent software systems, as
Vesta does. Figures 11.1 and 11.2 show that Vesta's performance is competitive with

2 Recall that the archiver is the Unix program that assembles a collection of object files into
a library; see Section 2.4.
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Fig. 11.1. Elapsed time in seconds for scratch builds of the three tests using Vesta and Make.

Make's even though Vesta is additionally providing a consistency guarantee. We pre
viously noted that many organizations reduce inconsistencies in their builds by using
Makedepend with Make. The times in these figures do not include the time to run
Makedepend, for to do so would obviously tip the performance balance in Vesta's
favor and Vesta would still provide a stronger consistency guarantee.

Figure 11.1 shows that Vesta is slightly faster than Make on scratch builds of all
three build tests. Even though Vesta outperforms Make on scratch builds, it is worth
noting that scratch builds occur less often under Vesta. Users of Make often initiate
scratch builds in order to achieve consistency, as this is the only way to ensure it
under Make. Vesta eliminates the need for scratch builds because Vesta always pro
duces consistent incremental builds. However, if a user changes a low-level header
file that is used in many places , a near-scratch build will result in which many files
are recompiled. Figure 11.1 indicates that Vesta performs quite well on such builds.

Figure 11.2 shows that Vesta outperforms Make on incremental builds. The sce
nario it reports is an alteration to a single source file in each of the three tests followed
by a run of the evaluator. The figure shows the elapsed incremental build times. In
each test, the incremental build included one invocation of the compiler and one in
vocation of the linker. The time to run these tools is included in the elapsed times
shown, and while it is different for each test, it is roughly the same for the three
cases within a test.

What is the difference between the "Make One" and "Make All" columns? When
a program is composed of sources spanning multiple packages (as occurs in the Eval
uator and Release tests), developers using Make typically run Make only in the pack
age (directory) on which they are working; these are the times reported under the
"Make One" column. However, such incremental builds can lead to inconsistent re
sults if files in any of the other packages of the program have changed. To get a more
consistent build , developers can run Make in all of the contributing packages; these
are the times reported under the "Make All" column. In this incremental test, how
ever, no other packages were modified, so the difference between the "Make One"
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Fig. 11.2.Elapsedtimesin secondsfor one-module, incremental buildsunderVesta andMake.
The "Make One" columnis the time requiredto run Make in the single packagein whichthe
change was made, while the "MakeAll" columnalso includesthe time requiredto run Make
in each of the program'sother packages.

and "Make All" columns is simply the time required by Make to determine that all
the other packages were up-to-date.

The "Make All" scenario is much more of an apples-to-apples comparison with
Vesta than the "Make One" scenario. However, neither Make scenario comes close
to matching Vesta's consistency guarantees, particularly because they do not include
the time required to run Makedepend in each of the relevant packages. Adding the
time to run Makedepend would significantly heighten the "Make One" and "Make
All" bars.

This figure shows that, except for the trivial Hello program, Vesta ran substan
tially faster than Make alone . One expects that Vesta's performance advantage would
increase when building larger software, since incremental builds under Make and
Makedepend require time proportional to the size of the software being built, while
incremental builds under Vesta require time proportional to the magnitude of the
change. This claim is confirmed by the fact that Vesta ran 86% faster than Make
alone on the Evaluator test, but 145% faster on the larger Release test.

11.2.2 Performance Breakdown

Let's look in more detail where the time goes in Vesta in the scratch and incremental
builds of Figures 11.1 and 11.2. The total elapsed time can be divided into three
parts : the time spent in the Vesta evaluator itself, the time spent by the evaluator in
remote procedure calls on the Vesta function cache , and the time spent in external
.run.t.oo.l invocations. (The overheads due to the repository and the tool encap
sulation machinery are included in the _r un_t oo l time ; as part of the tests , these
overheads were not analyzed in any greater detail.)

For scratch builds, Figure 11.3 shows that the time spent doing evaluation and
caching for non-trivial builds is no more than 8% of the total running time. Moreover,
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Fig. 11.3. Breakdown of scratch build elapsed times in seconds for each of Vesta's major
components.
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Fig. 11.4. Breakdown of one-module, incremental build elapsed times in seconds for each of
Vesta's major components.

the larger the software being built, the smaller the fraction of total elapsed time spent
running the evaluator and cache. As larger software is built with Vesta, this fraction
should continue to decline somewhat and certainly should not increase.

The breakdown of the elapsed time for incremental builds is shown in Fig
ure 11.4. It demonstrates that Vesta's performance scales well, at least for medium
sized programs. Even though the sources for the Release test are more than twice the
size of those for the Evaluator test, the absolute times spent in the Vesta evaluator
and function cache are small and nearly identical across the two builds. This result
supports the claim that the time spent in the Vesta system proper is proportional to
the magnitude of the change, not to the total size of the software being built.
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126

Hello Evaluator Release

Fig. 11.5. Elapsed times of one-module, incremental builds in seconds with different Vesta
caching levels. For comparison, the final column shows the incremental build time under
Make.

11.2.3 Caching Analysis

Having seen that Vesta's overall performance, from a user's perspective, dominates
Make's, let's look at some aspects of Vesta's behavior in more detail in order to
project its scalability. In Chapter 8, we examined Vesta's caching machinery and
emphasized that caching of user-defined function calls is necessary to achieve good
overall system performance. This caching has its costs, most notably, the cost of
computing each function's fine-grained dependencies. In this section we will see
that, in practice, the benefits outweigh the costs.

To measure the effectiveness of caching user-defined functions, the same three
tests were performed with three different levels of caching :

• calls of .zun.t.oo.l only,
• calls of _run_tool and mcdels.' and
• calls of _run_tool , models , and user-defined functions.

The first of these corresponds closely to what Make provides - the ability to avoid
invocations of individual tools - but with Vesta's strong consistency guarantee. The
second level, in caching model calls, incorporates a natural caching boundary be
cause every package build is performed by evaluating the package's root model. The
third level is Vesta's normal caching behavior. Figure ll.5 shows the results of do
ing incremental builds of the three tests with these three caching levels (in reverse
order); the final column shows the "Make All" elapsed time from Figure 11.2 for
comparison.

We can draw three main conclusions from this data:

3 Recallthat a Vesta modelrepresents a one-argument closurethat can be calledfrom other
functions and models.
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• Caching all function calls produces substantial performance gains over the two
lower levels of caching. This performance difference should become even bigger
for larger software.

• Caching only _run_too1 invocations is clearly not sufficient. When only these
invocations are cached, the cost of doing incremental builds becomes propor
tional to the size of the software being built, not to the number of tool executions
required. This is especially evident in the case of the Release test, where cach
ing only .zun.t.oo l calls creates so many requests on the function cache that
the build time grows by an order of magnitude over the Vesta norm in which all
function calls are cached.
Although caching model calls in addition to .zun.t.oo l calls does help, substan
tial additional performance benefits result when calls to user-defined functions
are also cached. Again, the Release test demonstrates this point well; caching
models in addition to _run_tool calls gives a 5.5x speedup, but caching user
defined function calls as well yields almost a 2x additional speedup factor.

We can therefore conclude that the benefits of performing fine-grained dependency
analysis clearly outweigh its cost.

Recall from Section 8.4.4 that in addition to the normal cache entry created for
each model evaluation, the evaluator also creates a special cache entry. These special
cache entries yield faster cache hits, and the overhead required to create them is quite
small. In the tests above, such special cache entries accounted for all the cache hits
for model evaluations. This result clearly indicates the usefulness of these special
cache entries.

11.2.4 Resource Usage

Let's now examine the CPU usage of the main components of the Vesta system, as
well as the memory usage of client processes. More detailed measurements about the
server components, the function cache and repository, appear in Sections 11.3 and
11.4 below.

CPU Usage

To measure the CPU usage, a simple script was used to monitor the evaluator, the
runtool server, the function cache, and the repository during both scratch and incre
mental builds. This script invoked the Unix ps utility once every second." During the
builds, there was no other build in progress that was using the same function cache
or repository, that is, the Vesta system was being used by a single client.

The evaluator and the runtool server execute on the client machine. As the data in
Figure 11.6 show, the average CPU load on the client machine is below 5%. The CPU
load caused by these two programs should remain about the same when building
larger software.

4 ps is a program that displays resource usage data about currently executing programs.
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Fig. 11.6. The mean CPU loads of the Vesta evaluator, runtoolserver, function cache server,
and repository serverduringscratchand incremental builds.

As Figure 11.6 shows, the server load is dominated by the repository, which, for
a single build, consumed between 13% and 16% of the server's CPU.5 This sug
gests that a dedicated repository server could accommodate about 7 simultaneous
builds. Assuming that developers spend significantly more time thinking and editing
than building (say, a factor of 5 to 10), a single server could plausibly accommo
date around 50 developers. This is, of course, only a rough estimate, for it does
not account for interactions between builds (e.g., files in common) that might affect
CPU load. It also doesn 't account for the relatively underpowered server machine
used in these tests and the substantial improvements that could be achieved with
modem hardware. Nevertheless, the rough estimate is supported by anecdotal expe
rience, since a team of 130engineers successfully developed a substantial code base
(700,000 source lines) in Vesta and the server (a somewhat more powerful machine)
held up well under that load. (See Section 12.1.)

Client Process Memory Usage

In the typical Vesta system configuration, the evaluator and the .run.t.oo I server
are both run on the client machine. The memory usage of the .z'un.EooL server is
always well below 2MB. The evaluator, on the other hand, can consume somewhat
more memory during a large scratch build . Figure 11 .7 shows the memory consump
tion of the evaluator for both scratch and incremental builds of the test programs/'

How would these memory requirements scale for larger builds? Incremental
builds should consume memory similarly, even for much larger software, since (see
Section 11.2.2) the cost of an incremental build is determined by the magnitude of
the change. Since the evaluator's memory consumption is roughly proportional to

5 In these tests, the function cache and repository servers executed on a single dedicated
server machine.

6 Theseare the memory usagesreported by ps just before the evaluator exits.
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Fig. 11.7. The run-time memory usage in megabytes of the Vesta evaluator on scratch and
incremental builds. The last two columns in each case showthe incremental results in which
1 file and 5 files were changed, respectively. (The 5-file change test is not applicable in the
Hellocase becausethat program consists of only a single file.)

the size of the call graph it must evaluate, the memory required by the evaluator to
do an incremental build is almost completely independent of the size of the software
being constructed. For scratch builds , however, it is harder to judge how well the
evaluator's memory usage will scale when Vesta is used to build multi-million line
software systems. It should be remembered that scratch builds are rare when using
Vesta, so their performance is of less importance.

The memory requirements reported above may be artificially high because the
evaluator uses a garbage collector for its memory management. The collector uses
heuristics to decide when it should grow its heap and has been observed doing so
unnecessarily. The evaluator's memory usage for large scratch builds could be de
creased by tuning the collector's heuristics. However, that might also increase the
frequency of collections, thereby slowing down evaluations. Also, the typical mem
ory configurations of modem hardware would likely make these concerns irrelevant.

11.3 Repository Performance

The preceding section focused on macroscopic measurements of Vesta system per
formance as seen by a user. We now look at a collection of measurements of the
repository's performance, which can be briefly summarized.

• We consider the speed of basic file operations through the repository's NFS
server interface. This aspect of repository performance is most important dur
ing builds when encapsulated tools make intensive use of the repository to pro
vide file service. If the repository is fast enough to service builds adequately, it
will easily meet the lighter demands placed on it by users browsing through the
append-only source tree or editing files in mutable source directories. The mea
surements show that repository performance is indeed adequate. In comparisons
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on the same hardware, the repository shows a write data rate of about 96% of a
standard NFS server, a read data rate of about 55%, and comparable performance
on other operations.

• We quantify the repository's memory and disk space consumption with measure
ments of the amount of source code stored in the repository (number of pack
ages, versions, files, etc.), together with a breakdown of the actual memory and
disk space used by the server for various purposes. The repository's technique
of keeping directory structures in memory appears successful; a significant but
reasonable amount of memory is used, and memory does not grow unreasonably
as the amount of source code increases. The repository's approach to file version
ing appears successful too, for even though it does not use any form of source
compression, deriveds still take up considerably more disk space than sources,
and the space consumed by old versions of sources is inconsequential at today's
disk capacities and prices.

• We examine the speed of the repository's development cycle tools: vcheckout,
vadvance, vcheckin, etc. These tools all run very fast (roughly 0.5 to 1.5 elapsed
seconds for the cases tested), making the system pleasant to use.

11.3.1 Speed of File Operations

The performance of the repository as a file server is assessed on two commonly used
file system benchmarks: the Connectathon '97 Basic Benchmark (CBB) [15] and the
Modified Andrew Benchmark (MAB) [30,50]. CBB is a microbenchmark that tests
small groups of related operations. MAB is a higher-level benchmark that measures
performance on a software development task. Neither benchmark provides a mea
surement of file server performance in isolation; both measure overall file system
performance, including the buffer cache of the client operating system. Both (espe
cially MAB) can at times be CPU-bound, not I/O-bound. Nonetheless, the bench
marks provide a rough basis for comparison between the repository and an ordinary
NFS file server.

These measurements used the Vesta configuration and hardware described in
Section 11.1. The benchmarks either accessed a mutable directory in the user-space
repository server via NFS version 2, or (for comparison) accessed a directory in
the underlying AdvFS file system through the standard kernel-space NFS version 3
server. In both cases, accesses were over the ATM network described in Section 11.1.

On the Connectathon Basic Benchmark (Table 11.2), the repository is slightly
slower than the kernel NFS server on most operations, but there are substantial dif
ferences on a few. Data writes and reads (tests 5a and 5b) are the most interesting.
Converting the elapsed times to bytes per second and comparing, we see that the
repository's write data rate is 96% of kernel NFS, while its read data rate is 55%.

These differences probably arise from the fact that writes appear artificially fast
under Vesta because the repository cheats, as explained in Section 7.2.5. The repos
itory server violates the expected NFS2 semantics by not forcing writes all the way
through to disk before returning to the client, so the benchmark does not get the
expected "write-through on close" semantics at user level. The kernel NFS server,
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Test Description AdvFS+NFS3 Vesta+NFS2
1 file and directory creation: 6.13 (0.19) 7.32 (0.38)

creates 155 files and 62 directories.
2 file and directory removal: 5.56 (0.19) 6.53 (0.36)

removes 155 files and 62 directories.
3 lookup across mount point: 1.35 (0.07) 1.37 (0.04)

500 getwd and stat calls.
4 setattr, getattr, and lookup: 11.38 (0.17) 3.04 (0.42)

1000 chmods and stats on 10 files.
4a getattr and lookup: 0.11 (0.02) 0.01 (0.03)

1000 stats on 10 files.
5a write: 5.88 (0.57) 6.26 (0.82)

writes a 1048576-byte file 10 times.
5b read: 1.40 (0.02) 2.54 (0.08)

reads a 1048576-byte file 10 times.
6 readdir: 5.28 (0.18) 7.27 (0.24)

reads 20500 directory entries, 200 files.
7a rename: 200 renames on 10 files. 3.51 (0.13) 6.75 (0.34)
9 statfs: 1500 statfs calls. 1.16 (0.04) 1.18 (0.17)

Table 11.2. Connectathon Basic Benchmark, run on a standard file system through NFS ver
sion 3, and on the Vesta repository through NFS version 2. Each table entry is an average
elapsed time in seconds; smaller numbers are better. All values are averaged over 20 runs of
the benchmark. Standard deviations are included in parentheses.

on the other hand, implements the NFS3 protocol correctly and thus does provide
write-through on close.

Read operations are slow because the data is really being read from disk, so the
extra overhead of going through the user-space repository server is fully visible. The
Connectathon read test flushes the client machine's buffer cache before each read.

Curiously, the repository is a great deal faster than kernel NFS on tests 4 and 4a.
This may be due to the repository's in-memory directory structure, but in any case
the difference is probably unimportant for overall system performance.

Tests 7b and 8 of the benchmark were omitted because they test hard links and
symbolic links, neither of which are supported in repository mutable directories.

The first phase of the Modified Andrew Benchmark (Table 11.3) creates a tree of
directories. The second phase copies a 350 KB collection of C source files into the
tree. The third phase traverses the new tree and acquires basic file information for
each file and directory," The fourth phase reads every file in the new tree. The fifth
phase compiles and links the files. This benchmark does not use the Vesta evaluator
or tool encapsulation; it assesses the performance of the repository as a file server
only, not the overall Vesta system performance on software building.

On this benchmark, surprisingly, the repository is actually somewhat faster than
the kernel NFS server in some phases and in the overall time. It is likely that some of

7 That is, it executes the Unix "stat" system call.
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Phase Description AdvFS+NFS3 Vesta+NFS2
1 Create Directories 947 (175) 756 (116)
2 Copy Files 9286 (366) 5776 (280)
3 Directory Status 3609 (56) 3750 (90)
4 Scan Files 4393 (189) 4414 (112)
5 Compile 22627 (536) 18913 (630)

Total 40862 (654) 33609 (840)

Table 11.3. Modified Andrew Benchmark, run on a standard file system through NFS ver
sion 3, and on the Vesta repository through NFS version 2. Each table entry is an average
elapsed time in seconds; smaller numbers are better. All values are averaged over 20 runs of
the benchmark. Standard deviations are included in parentheses.

the difference (especially in Phase 1) is due to the repository's in-memory directory
structure, and some (especially in Phases 2 and 5) is due to the lack of write-through
on close, previously discussed.

Although these measurements do not fully illuminate the details of the reposi
tory's NFS performance, they do to establish that the performance of the repository is
adequate for Vesta's purposes. Even though reading from the repository server takes
almost twice as long as reading from an in-kernel NFS server, the actual elapsed time
required for builds is slightly less. Both the small, non-encapsulated build measured
in the Andrew benchmark and the Vesta builds measured in Section 11.2.1 show this
effect.

Although the repository performance is adequate, improving it would certainly
be beneficial. One obvious possibility would be to move repository NFS reads and
writes from the user-space server into the kernel (where "real" NFS servers reside).
The repository server does no useful work on these operations other than mapping
from its file handles (longids) to the corresponding files in the underlying file system.
It would be straightforward to move this functionality into the kernel, thereby elimi
nating the user-space server from the path of these time-critical operations. All other
repository NFS operations would continue to be handled in user space, minimizing
the amount of code added to the kernel. Of course, moving code into the kernel com
promises portability, which is more easily achieved with a pure, user-space server.

11.3.2 Disk and Memory Consumption

The results presented in this section are based on a snapshot of the working repository
on October 27, 1997. This is the repository that was being used to develop the Vesta
system itself. It also contained a few other software packages that served as test cases
for the repository and evaluator. In particular, it included the Juno- 2 constraint-based
drawing editor [29,32] and the many Modula-3 [47,48] libraries required by Juno-2.

The snapshot contains 69 top-level packages and 26 branches comprising 648
checked-in versions and 10 reservation stubs for versions under development. There
are 631 checkout sessions; this includes both active sessions associated with the
reservation stubs (10), and old sessions associated with checked-in versions (621).
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These checkout sessions comprise 4,981 package versions, for a grand total of 5,629
versions.

Disk Space Usage

Summing over the entire snapshot, including both checked-in versions and check-out
sessions, there are 24,556 directories and 407,662 files. These numbers represent dis
tinctly named directories and files in the externally visible hierarchical name space.
In the repository's internal DAG structure, many of these directories and files share
storage. If all 407,662 files were stored without sharing, they would occupy about
11.7 GB (more precisely, 12,018,130 l-KB blocks). Performing a similar count for
the mutable portion of the repository (which was also included in the above count),
we find it contains 29 directories and 449 files. Again, some of these files may share
storage with each other or with immutable files. If stored without sharing, the files
would occupy about 2.9 MB (2,986 l-KB blocks). But, because of the repository's
internal sharing of storage between identical files, the actual storage consumption
is far less. In reality, only 10,856 distinct source files exist in the snapshot's shortid
pool, occupying only about 263 MB (269,030 l-KB blocks).

How much disk space is spent on old versions and branches? To get an approx
imate answer to this question, we look at only the latest version of each package
and each branch. There are 66 latest top-level versions (not 69, because a few pack
ages have no versions), comprising 445 directories and 4,367 immutable files. If they
were stored without sharing, these files would occupy about 93 MB (93,391 l-KB
blocks). Since only one version from each package is counted here, there is little or
no sharing, so we can take these figures as a good estimate of the actual amount of
space consumed. This represents about 35% of the source disk space, so about 65%
(about 172 MB or 175,639 l-KB blocks) is spent on old versions and branches.

The snapshot was taken immediately after running the weeder and keeping only
the deriveds produced by evaluating the latest version of each package, branch, and
check-out session; all other deriveds were deleted. This left the snapshot with 2,958
derived files. (The few files that are both sources and deriveds are counted only as
sources.) These deriveds occupy about 282 MB (288,367 l-KB blocks). Thus, the
entire pool of sources and deriveds occupies about 545 MB, 17% of which is con
sumed by latest source versions, 31% by old versions and branches, and 52% by
deriveds.

Of course, if the snapshot had not been taken just after weeding, the proportion
of deriveds would be much higher. Weeding usually occurs when the disk (whose
capacity was about 4 GB) is nearly full. At this point over 93% of the disk would be
occupied by deriveds.

Main Memory Usage

Main memory also represents a potentially limiting resource because the repository
keeps all of its directories in main memory (see Section 7.2.1). For the snapshot,
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the repository's packed, garbage-collected memory pool used 3.0 MB to store im
mutable directories, 0.34 MB to store appendable and mutable directories, 0.44 MB
to store mutable attributes, and a few tens of kilobytes for other structures. A check
point taken just before the snapshot was 3.77 MB; this checkpoint holds an exact
image of the repository's runtime memory pool and encodes its complete state. In
addition, 0.24 MB of the repository's general-purpose heap (that is, memory allo
cated by the new construct in C++) were consumed by an inverted index that maps
from immutable directory shortids to the in-memory directory data structures (see
Section 7.2.2). This index was not included in the checkpoint because it can be re
constructed at recovery time. Thus, 4.0 MB were used to store 24,585 directories
and related structures such as attributes, giving an average cost of about 171 bytes
per directory.

The repository saves memory as well as disk space by storing the hierarchical
name space internally as a DAG. Although there are 24,585 directories with distinct
hierarchical names, internally the snapshot contains only 8,411 directory data struc
tures (7,560 immutable and 851 appendable or mutable). Within those directories,
the repository's technique of recording directories internally as lists of changes rela
tive to other directories saves additional space. Although there are 432,696 files and
directories with distinct hierarchical names, and hence an average of 17.60 entries in
each external directory, the internal directory data structure used to represent those
directories contains only 85,650 entries, for an average of 10.18 entries per internal
directory. Internal directories can also contain placeholder entries for objects that
have been deleted; the snapshot contained 1,866 of these, an average of about 0.22
per internal directory.

An internal directory consists of one or more blocks (usually just one), each
containing a fixed-sized header, a packed list of entries, and (for appendable and
mutable directories) some optional space for expansion. The snapshot used 8,502
blocks to store the 8,411 directories, for a total of 0.28 MB of header (34 bytes
each), and a total of 0.21 MB of expansion space in the 851 appendable and mutable
directories (an average of about 258 bytes each). An entry contains a pathname arc
plus either 10 or 26 bytes of overhead depending on whether it points to a directory
or file, respectively. The snapshot used a total of 2.8 MB to store active directory
entries and an additional 29.0 KB to store placeholder entries for deleted objects.
The average space required was thus 33.78 bytes per entry.

Scaling Projections

Stepping back from these details, what do we learn about the repository's overall
memory and disk consumption, and how would we expect it to grow as more sources
are stored?

Disk consumption for sources is proportional to the number and size of distinct
source file versions. After about a year of development of Vesta under Vesta, the
data above shows about a threefold expansion in disk storage to store all package
versions instead of keeping only the most recent version of each package. Of course,
the factor of three would grow a bit larger on a source pool that evolved over a longer
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time and had more active branches. Nevertheless, considering the exponential growth
in disk space for constant cost and the fact that humans are not learning to type in
new source code at correspondingly higher rates, one can reasonably conclude that
the disk space required to store old source versions is not a limiting factor in Vesra."
As the numbers on page 184 show, deriveds, not source, dominate the disk space
usage. Disk space for sources is not a barrier to scaling.

Main memory consumption is potentially a greater concern, but as with disk
space, it is roughly proportional to the number of distinct source file versions. Each
new source file version added to the repository requires at most a small number of
directories and directory entries to be added to the data structure. A conservative es
timate, roughly valid if a separate vadvance is used to insert each new file version,
is one new directory and two new directory entries per new file version, for a to
tal of about 100 bytes. Thus, a repository server machine with 200 MB of physical
memory could hold the directory structure for about two million source file versions.
Moreover, the repository will still run correctly with less physical memory; it will
simply run more slowly due to paging. Larger repositories will become feasible as
affordable memory capacities continue to increase. Finally, a few opportunities re
main to shrink the present data structures: eliminating the per-directory expansion
space would save almost 10% with essentially no loss in performance.? and trading
time for space would achieve further savings.

11.3.3 Speed of Repository Tools

We now turn to the final set of repository measurements, the performance of the
development tools that manipulate files and directories. We look first at the case of a
local repository; the next section considers the remote case.

The benchmark is a simple one consisting of a series of repository actions:

1. Run vcreate to create a new package.
2. Run vcheckout to create a check-out session for the empty package.
3. Copy the repository's own source code from an ordinary (NFS-mounted) file

system into the new working directory for the package. The source code consists
of 92 files, containing 835,120 bytes or 876 l-KB blocks.

4. Run vadvance to install the source as the first version of the check-out session.
5. Run vadvance again. In this case vadvance detects that the working directory

has not changed and does not create a new version.
6. Touch (modify) one file in the package, triggering a copy-on-write. The chosen

file was 79,357 bytes long.

8 The earlier Vesta-l repository implemented an optional feature that could compress old
source versions by encoding them as deltas, similar to the representation used by Res.
When the system entered daily use, however, it transpired that 80% of the disk space was
typically occupied by derived files [13]. Thus, delta-compressing the source files would
have saved only a small percentage of the available disk space, so there was no motivation
to tum on the feature, and it was eliminated from Vesta-2 entirely.

9 In fact, this improvement appears in a later version of Vesta than the one measured here.
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7. Run vadvance.
8. Touch (modify) all the files in the package, triggering a copy-on-write for every

one.
9. Run vadvance.

10. Run vcheckin, installing the final version from the check-out session as version 1
of the package and deleting the working directory.

11. Run vcheckout on the package, creating a new check-out session initialized
from version 1.

12. Again touch one file, same as step 6.
13. Run vadvance.
14. Yet again touch one file, same as step 6.
15. Run vadvance.
16. Run vcheckin, installing the final version from the check-out session as version 2

of the package and deleting the working directory.

The entire benchmark was run 5 times, each time on 10 packages. The results are
shown in Table 11.4, and we see that every step (repository tool invocation) took well
under 1.5 seconds to run, with most taking 0.5 seconds or less. Steps that copied new
source code into the repository, or modified an existing source file for the first time
(triggering a copy-on-write), took longer but were consistent with the performance
measurements of Section 11.3.1 above.

Step Description Time per package
1 create an empty package 260 ms
2 check out the new package 560 ms
3 copy in 835 KB of source code 12000 ms
4 advance the package 1400 ms
5 advance again (no changes) 120 fiS

6 touch a 79 KB file 110 ms
7 advance the package 200 ms
8 touch all 92 files in the package 7600 ms
9 advance the package 1300 fiS

10 check in the package 470 ms
11 check out the package 660 ms
12 touch a 79 KB file 140 ms
13 advance the package 180 fiS

14 touch a 79 KB file 120 ms
15 advance the package 190 ms
16 check in the package 460 ms

Table 11.4. Vesta repository tool performance. The entire benchmark was run 5 times, each
time on 10 packages. The average time taken per package is given for each step, in millisec
onds rounded to two significantdigits.
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As these are interactive tools, their performance needs to be comparable with
human reaction/perception times. The table indicates that they clearly are; that is,
they are fast enough to make the system pleasant to use.

11.3.4 Speed of Cross-Repository Tools

The benchmark was used to compare the performance of the tools on the single
repository and cross-repository (Section 4.3.4) cases. However, these measurements
occurred several years after those reported above, by which time both the computers
and the networks used for the earlier measurements had been replaced with faster
hardware. Steps 14 and 15 of the earlier benchmark are omitted here, since they are
purely local and duplicate earlier steps in the benchmark.

Table 11.5 shows the results of the cross-repository performance benchmark. In
this test, the steps listed were run in order, 50 times each on 50 separate packages.
The table gives the average time for each step, rounded to two significant figures. The
Local column is the single repository case, Nearby is the cross-repository case where
the local and remote repositories are connected by a single hop of gigabit Ethernet,
and Distant is the cross-repository case where the repositories are separated by 3000
miles and ten hops through a corporate intranet. Each repository was running on a
500 to 600 MHz Alpha 21164A processor. In each case, the tools were run on a
client workstation with a 667 MHz Alpha 21264A processor, connected to the local
server by a 100 Mb ethernet. As the table shows, the tools are very fast in the local
and nearby cases, and fast enough to be usable even in the distant case.!"

Comparing the figures from the older tests of Table 11.4 done on slower hard
ware with the newer ones in Table 11.5, we see that the tools have sped up on most

Step Description Local Nearby Distant
1 create an empty package 50ms 250ms 6400 ms
2 check out the new package 64ms 590ms 5700 ms
3 copy in 1204 KB of source code 5300 ms 5400 ms 5200 ms
4 advance the package 2500 ms 2600 ms 2500 ms
5 advance again (no changes) 170ms 170ms 180ms
6 touch a 108 KB file 34ms 32ms 30ms
7 advance the package 160ms 180ms 180ms
8 touch all 92 files in the package 3200 ms 3300 ms 3200 ms
9 advance the package 2500ms 2500 ms 2600 ms

10 check in the package lIOms 780ms 18000 ms
11 check out the package 49ms 730ms 5800 ms
12 touch a 108 KB file 49ms 73ms 59ms
13 advance the package 150ms 160ms 160ms
16 check in the package 64ms 170ms 4700ms

Table 11.5. Vesta repository tool performance, comparing the local (single-repository) case
with two cross-repository cases, one where the remote repository is nearby and the other where
it is distant. Times are in milliseconds.

10 Note that copy, touch, and advance are always local operations.
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tests, but appear notably slower on tests 4 and 9 (advance). There are two reasons
for the difference: first, the tests were done on a larger package (835 KB vs. 1204
KB), and second, the measurements in Table 11.4 were taken before the repository
implementation fingerprinted files by content (Section 7.1.3), so they do not include
fingerprinting costs.

11.3.5 Speed of the Replieator

We conclude our examination of the Vesta repository's performance with a few sim
ple measurements of the replicator vrepl (see Section 4.3.3). These measurements
were taken at the same time as the cross-repository measurements reported in the pre
ceding section, using the same hardware and networking configurations. The repli
cator itself ran on the same class of machine as the repository servers (500 to 600
MHz Alpha 21164A processor).

Table 11.6 compares vrepl copying files between repositories with rep (the Unix
inter-machine copy utility) copying the same files directly out of the native file sys
tem on which the repository is built. The first column identifies the type of copying
operation, where "+" means "copy the directory and everything it contains" (that is,
follow the repository name hierarchy) and "@" means copy the package and every
thing it imports" (that is, follow the SDL import hierarchy). The second column is
the amount of data transferred. The remaining columns give the data transfer rates
in KB/s. These values were averaged over three trials and rounded to two significant
figures.

vrepl rep
Replicate Size Nearby Distant Nearby Distant
+repos/124 to empty repository 1.2MB 710 27 71 21
+repos/125 with 124 present 582KB 970 42 360 42
@repos/124 to empty repository 127MB 910 40 - -
@repos/125 with 124 present 640KB 67 5.3 - -

Table 11.6. Vesta replicator performance. Values in vrepl and rep columns are inter-repository
transfer rates in KB/sec.

Comparing the Distant columns for the first two rows, we see that vrepl and rep
have comparable performance over a slow network. This is the expected common
case for repository replication. We also see that vrepl significantly out-performs rep
for the Nearby case, in which the network performance is not the limiting factor,
probably because of the repository's in-memory directory representation. The last
two rows present numbers for vrepl only, since rep doesn't implement anything
comparable to the "@" functionality. The amount of data transferred in these two
cases differs by a factor of 500. Comparing row 4 with row 2, we see that the "@"

functionality induces significant overhead for small transfers. However, comparing
row 3 with row 1 shows that the overhead can be fully amortized over large transfers.
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11.4 Function Cache Performance

We tum now to some measurements of the performance of the function cache and
their implications for scaling.

11.4.1 Server Performance

Recall from Section 8.3 that looking up an entry in the function cache is a two-step
process. In the first step, the evaluator invokes the cache's SecondaryNames function
to learn the set of all secondary dependency names associated with a given primary
key (PK). In the second step, it invokes the cache's Lookup function. In the event that
there are no entries associated with the primary key passed to the SecondaryNames
function, the Lookup call is skipped. If there is a cache miss, the evaluator invokes
the cache's AddEntry function to create a new entry and add it to the cache.

An experiment measured the elapsed time spent in the function cache server pro
cess while it was handling various requests (via RPC) from the client. Each run of the
experiment performed a scratch build of the Vesta evaluator (starting from a nearly
empty function cache in which only the standard environment had been built), fol
lowed by five incremental builds of the evaluator triggered by a trivial modification
to a single evaluator source file. The mean times for each operation were calculated
for each run of the experiment; the means and standard deviations of those mean
times are reported in Table 11.7.

Number Mean Std. Dev.
Operation of Calls Time (ms) (% of Mean)
SecondaryNames 518 16.8 0.63%
Lookup 112 11.7 0.44%
AddEntry 438 8.1 0.24%

Table 11.7. Elapsed times in milliseconds of key function cache server operations.

A more detailed analysis reveals that misses account for 34% of the Lookup
calls and take 17.8 ms on average. In this experiment, 90% of the hits were to cache
entries in memory, taking only 6.3 ms each, while the remaining hits to cache entries
on disk took 30.3 ms on average. The limiting factor in cache operations appears to
be disk latency, probably because the function cache and repository server, which run
on the same machine during this experiment, are competing for CPU and disk. Such
contention could be eliminated by running the processes on separate server machines
and by storing their files on separate file systems.

These results are for a relatively small build. A second experiment performed a
scratch build of the entire Vesta release followed by incremental builds of newer and
older versions of the entire Vesta release. The number of cache operations in this
experiment was significantly larger, as was the number of new entries added to the
cache. Table 11.8 shows the results. 11

11 This table lacks standard deviations because the experiment was performed only once.
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Number Mean
Operation of Calls Time (ms)
SecondaryNames 4,351 29.0
Lookup 763 44.0
AddEntry 3,948 21.6

Table 11.8. Elapsed times in milliseconds of key function cache server operations for a scratch
build of the complete Vesta release followed by two incremental builds.

Comparing Tables 11.7 and 11.8, we see that cache performance does degrade
as the number of cache entries is increased. One cannot, with any confidence, ex
trapolate quantitatively how the function cache will perform for even larger builds.
However, the results presented in Section 11.2.2 indicate that the function cache per
forms well for medium-size scratch and incremental builds, and it seems reasonable
to infer that, while the cost of cache accesses increases significantly with cache size,
that cost is nevertheless acceptable overall. To put this in perspective, recall that the
cost of a cache access is a few disk operations. In the case of a hit, a large number
of disk operations is typically avoided; in the case of a miss, the extra accesses are a
small increment to the total.

11.4.2 Measurements of the Stable Cache

Recall from Section 8.6.1 that cache entries are partitioned first into PKFiles, and
then into CFP groups; only the entries in a single CFP group need be consulted on
each Lookup operation. How effective does this organization tum out to be?

Attribute Mean Value
Number of CFP groups per PKFile 1.33
Number of entries per CFP group 1.02
Cache entry size (Kbytes) 8.24
Function result value size (Kbytes) 5.82
Number of secondary names per PKFile 52.4
Percentage of common names per PKFile 99.1%
Percentage of uncommon names per cache entry 2.5%

Table 11.9. Mean values of various function cache attributes.

The mean values of various function cache properties are shown in Table 11.9.
These statistics were measured from a stable cache containing 13,900 cache entries
distributed over 10,183 PKFiles. The total disk space required to store these entries
was 112 MB, or 8.2KB per cache entry.

The statistics indicate that the separation of entries into CFP groups works well,
for the average number of entries per CFP group is only slightly more than 1. More
over, of the average 52.4 secondary names per PKFile, more than 99% are common.
Thus, only a very small number of fingerprints need be compared during a typical
Lookup operation.
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11.4.3 Disk and Memory Usage

The cache server's memory requirements are dominated by the storage used for
in-memory cache entries. Much like a virtual memory system, the function cache
flushes unused cache entries to disk over time. Its policy can be adjusted to flush
entries more aggressively if too many entries are being retained in memory.

Table 11.9 shows that the average function result value occupies 5.82KB, and
that the average cache entry in the stable cache occupies 8.24KB. Most of the dif
ference between these numbers is metadata (such as the PKFile and CFP group data
structures) and bookkeeping information that allows the stable cache entries to be
efficiently shuffled into new CFP groups when a PKFile's set of common names
changes. That extra data is not required for cache entries in main memory, so such
cache entries average 6KB in size.

These numbers enable us to estimate the main memory requirements as the cache
server capacity scales up. 100MB of main memory will accommodate about 16,000
cache entries. To put this in perspective, the entire Vesta system, including the stan
dard environment it requires, generates about 3,500 cache entries. Thus, a system
roughly three times larger could fit its entire cache in 100MB of main memory space
without inducing any cache flushing. For organizations developing systems beyond
this size, an investment in 100MB or more of server memory is negligible. We there
fore can tentatively conclude that the function cache's memory usage will scale ade
quately for large code bases. 12

Turning to disk space requirements, a stable cache of 12 million entries (the Vesta
design target) of 8.24KB each would require about 100GB of disk space. Disks of
this size are commonplace today and inexpensive. Thus, disk space needs of the
function cache do not impose an impediment to scaling.

11.4.4 Function Cache Scalability

The preceding sections touched on the implications of the measurements of medium
sized systems for scalability of the function cache. Here we briefly consider a few
other potential scalability bottlenecks and the measures taken to prevent them.

• Lock Contention. As the number of clients increases, overall function cache
performance might degrade due to lock contention on the cache's in-memory
data structures. To avoid this problem, the function cache uses relatively fine
grained locking: there is a separate lock on each in-memory PKFile and its cache
entries. Moreover, the lock on the cache's central structures is held as briefly as
possible in the places where it is required.

• Bad Cache Entry Distribution. The function cache's performance will suffer
if the number of cache entries per CFP group grows too large. However, due to

12 The function cache uses the same garbage collector as the evaluator, so as described in
Section 11.2.4, its actual memory usage may be somewhat more than strictly needed. The
comments in that section about tuning the collector's heuristics apply equally well to the
function cache.
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the function cache's scheme of dividing PKFiles into CFP groups (described in
Section 8.6.1), this problem is unlikely to be serious. Indeed, this problem occa
sionally arose during Vesta's development and it was easily corrected by altering
bridge models so that the evaluator computed better (that is, less clustered) pri
mary keys for their functions. The VCacheStats program that was used to gather
the statistics for Table 11.9 can also be used to uncover skewed cache entry dis
tributions, making such problems easy to detect.

• Disk Latency. As the number of cache entries per PKFile increases, the files
grow larger and more time may be spent waiting on disk reads during cache
lookups. Two factors mitigate this effect. First, an increased number of entries
per PKFile should account for at most one of the two orders of magnitude in
cache entry growth cited above. (The other order of magnitude will appear in
the form of an increased number of PKFiles.) Second, the PKFile disk format is
designed to minimize the number of disk reads required per lookup. In particular,
the index of CFP groups is stored separately from the cache entries in the hope
that the entire index can be read in a single disk operation. Similarly, extra cache
entry information not required for lookup is stored separately from the entries,
again to decrease the number of read and seek operations in a typical lookup.
Memory Usage. There is an obvious time-space tradeoff between the number of
cache entries kept in memory and the speed of a typical lookup. As the number of
cache entries and clients increases, a smaller fraction of the "working set" entries
can be kept in a fixed amount of memory. One solution to this problem is simply
to install more memory on the server machine. But even if no entries were kept
in memory, the detailed results described in Section 11.4.1 above imply that the
overall function cache performance would not degrade badly.

Of course, one can't know if these considerations are sufficient to ensure scalabil
ity until Vesta is actually used for large systems. Some anecdotal evidence (presented
in Section 12.1) indicates that the cache server's scalability is, indeed, adequate.

11.5 Weeder Performance

We tum now from the performance of the cache server proper to the performance
of its adjunct, the weeder. We consider two measures: the frequency with which
weeding is required, and the time needed to perform a weeding operation when it
is needed. These concerns are of lesser weight than the performance of the system
components discussed above, since weeding is a background process and nearly in
visible to users. However, some administrative effort is needed to run the weeder or
to set it up to run automatically, and builds are likely to run a bit more slowly while
the weeder is active and competing for resources, so these performance issues are
worth some attention.

How often is weeding necessary? The answer depends on how quickly the disk
used by the repository and function cache fills up, which in tum is a function of the
disk's size, the rate at which new cache entries and deriveds are created, and the
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sizes of those cache entries and derived files on disk. During the initial use of Vesta,
in which three developers were actively doing builds against a 4GB disk, weeding
was required about once every two weeks.

When the Vesta system was used by a significantly larger engineering team (more
on this in the next chapter), the parameters were rather different. More than 100
developers were using the system, which used a disk cluster comprising 100 GB, and
their builds produced roughly 10 GB of derived files per day. They created a script to
run the weeder every night, with a weeding operation actually occurring if the disk
usage exceeded a predetermined threshold. The same script also ran automatically
during the day with a higher threshold to ensure that a spike in the rate of disk
consumption would not fill the disk before the next nightly run. In this environment,
weeding operations occurred once or twice a week.

How long does it take the weeder to run? Recall from Chapter 9 that the weeder
runs in two phases: a mark phase in which the cache entries and derived files to be
kept are determined, followed by a deletion phase in which the function cache and
repository carry out cache entry deletion and derived file deletion in parallel. Gener
ally, the deletion phase took significantly longer than the mark phase. In particular,
the deletion phase took 10--15 minutes when weeding a 4GB disk. By comparison,
the engineering group with the 100 GB disk cluster experienced weeding opera
tions that generally took about an hour. One would expect the deletion time to scale
linearly with the number of cache entries being deleted, which in tum is bounded
linearly by the size of the backing disk.

The performance of the weeder's mark phase is a function of the number of
graph log entries buffered in memory (see Section 9.2.1): the smaller the buffer, the
more passes over the graph log are required. As one point on the time-space curve,
weeding a graph log containing over 30,000 entries using a buffer of 10,000 entries
required four scans of the disk file and 10 seconds of elapsed time. There is no trend
data, since no experiments have been conducted with different buffer sizes. However,
even though more scans of the graph log are required for a given buffer size as the log
grows in length, it still seems reasonable to estimate that the mark phase will require
no more than 10 minutes on a cache of 1,000,000 entries. If so, the deletion phase
will continue to be the dominant factor in the duration of the weeder's execution.
Recent anecdotal evidence suggests this projection is accurate.

11.6 Interprocess Communication

Before concluding our examination of the Vesta system's performance, we should
note the overall characteristics of the communication substrate. For interprocess
communication, Vesta uses SRPC, a simple home-grown remote procedure call pro
tocol and library for C++ implemented on top of TCP sockets. SRPC does not in
clude an automatic stub generator, so all of the argument marshaling and unmarshal
ing stubs were written by hand. To simplify stub coding, SRPC provides methods
for sending and receiving common data types like integers, null-terminated strings,
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arrays of bytes, and sequences. The SRPC implementation uses TCP keep-alives to
detect network partitions and other connection failures.

Except where noted in the more recent cross-repository experiments, all of the
measurements described in this chapter were carried out on AN2 (see Section 11.1).
On this network, the average round-trip elapsed time for a null SRPC (i.e., no argu
ments or results) is 1.2 milliseconds. Simple bandwidth tests using a range of argu
ment and result sizes indicate a peak transfer rate of 132 Mbit/sec and an average
rate of around 100 Mbit/sec. Operationally, these rates have proved adequate; there
has been no need to devise optimizations to improve them.

In Summary

This chapter has presented evidence for the contentions (1) that Vesta delivers su
perior functionality to the most popular alternative (Make) with equivalent or better
performance and (2) that it does so with equipment resources per developer that
make it practical to deploy in a large development organization. We have specifically
examined resource usage on client and server machines and quantified their use for
systems of moderate size. Extrapolation from this data, in the absence of direct mea
surement, leads one to believe that Vesta's architecture and construction will handle
systems of considerably greater size, up to the design targets of Section 3.2. Some
possible barriers to scaling were identified, along with potential solutions.

Despite the measurement and analysis covered in this chapter, as well as the
design and implementation care presented throughout this book, one cannot know
for certain how well Vesta will scale until it is actually used to build large systems.
The prospects for that happening are the subject of the next, and concluding, chapter.
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Conclusions

Section 1.3 set out the Vesta system's objective: to be a software configuration man
agement system that scales to accommodate large software, is easy to use, and pro
duces repeatable, incremental, and consistent builds. Chapters 2-9 explained how
Vesta achieves that objective, and Chapters 10-11 evaluated Vesta's functionality and
performance against its most widely used competition. To summarize briefly, Vesta:

• preserves source code immutably and immortally,
• supports both simple linear versioning and arbitrarily complex branching for par

allel development,
• makes all versions directly accessible through the file system,
• provides very fast check-out and check-in using copy-on-write,

supports distributed development with source replication, cross-repository check
out and check-in, and cross-realm access control,
manages storage for source and derived files largely automatically,

• provides a flexible, general description language for the precise description and
modular organization of software system construction,
enables integration of new build tools within the description language without
modification of either the tools or the Vesta system,

• builds software configurations repeatably, incrementally, and consistently, and
• runs as fast as Make for scratch builds and outperforms it for incremental ones.

The authors believe that these characteristics make Vesta an attractive and even
compelling replacement for conventional configuration management tools. But of
course we are hardly unbiased. The real test of any practical system is whether others
find it useful. We therefore conclude our assessment of the Vesta system with an
examination of its actual use to date and our thoughts on its potential for future
adoption.
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12.1 Vesta in the Real World

Vesta was born as a research project, one with a rather extended history. Once we
believed that Vesta brought substantial practical benefits to the software development
process, we embarked on a series of technology transfer explorations. This history
is described elsewhere [39]. We omit most of it here to focus on the most recent
developments.

Vesta has been in daily use by a major engineering group since 1999. This group
has evolved over the years, but it started out as DEC/Compaq's Arafia group, which
at the time it began using Vesta was a team of about 130 developers working on a
large microprocessor design. The team was organized as two subgroups, one in New
England and the other in California, each with its own Vesta repository. Both the chip
design itself and the team's custom design software were stored in the repositories
and developed using Vesta's suite of tools. The final code base consisted of about
700,000 lines.

The Arafia group didn't move to Vesta overnight, of course. Rather, they intro
duced its use gradually, beginning with a smaller group (about 20 developers) and
expanding as they gained experience and confidence with the system. This initial
group served as our first real users, shaking out bugs in the implementation and ex
posing the need for various small features that we did not initially anticipate.

Overall, the Arafia group found Vesta a substantial improvement over their previ
ous build tools. Vesta's strong support for parallel source development and repeatable
builds saved them considerable time (3 to 6 months in the architectural design phase
alone), and the distributed development features provided answers to some extremely
difficult problems they faced in bicoastal software and design database management.
They also found Vesta's repeatability and consistency guarantees to be extremely
useful for tracking down difficult bugs, a characteristic that gained in importance as
they approached completion of the chip design.

After the DEC/Compaq Alpha division was transferred to Intel, the former Arafia
group continued to use Vesta on new projects. As of February, 2005, the number of
developers using Vesta had grown to over 350, and the system being built had ex
ceeded three million source Iines.' This build is substantially larger than the Arafia
design, and the complexity of the tools and the input they process is higher, stressing
the Vesta implementation and highlighting the scaling bottlenecks. To date, most of
the work to eliminate those bottlenecks has been on the repository server implemen
tation, and generally in areas in which the simplifying assumptions made to build the
research prototype are no longer valid. This is as we expected.

It is worth noting that the Vesta approach to scaling builds through parallel execu
tion and distributed runtool servers has worked nicely. Collectively, the group at Intel
routinely runs 20 simultaneous builds, each performing up to 10 tool invocations in
parallel. Thus, 200 separate tools (mostly on distinct machines) are simultaneously
competing for the repository's services. Even when running on fast hardware, a sin
gle repository server begins to be a performance bottleneck when serving so many

1 Source lines are not a particularly meaningful metric for some of the components of this
build, like schematic diagrams.
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clients, so the group uses Vesta's replication machinery to manage multiple repos
itories (presently three), providing ample capacity for further growth in their build
activity.2

To our knowledge, Intel has the largest Vesta-based development underway at
present. However, Vesta has been ported to Linux (both 32-bit Intel and Alpha ver
sions) and is available as open source under the LGPL [20]. The complete sources
have been available through the Vesta web site [62] since late 2001, and there is a
continuing modest stream of downloads. We don't really know, therefore, how many
Vesta users there are, although it is unlikely that we would be unaware of a large
scale use of the system.

12.2 Vesta in the Future

While we believe Vesta usage to date demonstrates its utility, our original goal was
more ambitious, since we targeted the system at code bases much larger (tens of
millions of source lines). We have claimed in this book that Vesta's algorithms and
implementation structure will scale up well, but the jury is still out. We remain hope
ful that the system's easy availability and attractive functionality will eventually win
it additional users with large code bases.

It is, however, appropriate to consider some potential impediments to Vesta's
adoption.

Generality. The Vesta builder always creates derived objects from source, using
caching of build steps as an essential performance optimization to save work. This
paradigm somewhat limits the builder's generality, because some software tool sets
or development environments would prefer to be more directly in control of the build
process in a more specialized way. For example, an incremental linker increases the
speed of linking by modifying a previously linked program, replacing only the parts
that have changed, rather than relinking the entire program. Some compilers such as
the Modula-3 compiler work most efficiently when given all the source files that go
into a program at once, which allows them to parse interface files only once and cache
the results for reuse rather than reparsing them for each implementation file that uses
them. Java's j avac compiler [31] includes its own Make-like logic to avoid regen
erating a derived file if it deems the existing one to be up-to-date (although it some
times fails to recompile some sources that it should, producing inconsistent builds.)
Finally, some build tools may require human intervention during their execution.

Generally, one can find a way to use tools like these with Vesta by bypassing the
incremental features and scripting any human interaction that would otherwise be
required, but there can be a performance penalty in doing so. For example, the Unix
ar tool, which is used in the standard environment (Section 6.2.1) to build libraries,
was originally designed to be used incrementally to replace an object file in a library
with a newer one, but under Vesta it always rebuilds the entire library file from its

2 The authors are indebted to Matt Reilly and Ken Schalk for the foregoing assessments of
the use of Vesta at DEC/Compaq and Intel.
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constituent object files. We decided the performance penalty was tolerable. Similarly,
the Arafia group made use of a tool that operated in an incremental mode. At the time
they adopted Vesta, they were enhancing it with additional incremental features, but
they chose instead to discontinue using the incremental features entirely, deeming
the performance cost worthwhile in exchange for Vesta's other benefits. Ultimately
they were able to modify the tool to work better with Vesta and get back a good deal
of the lost performance.

Maturity. While Vesta offers robust, attractive functionality, it is not a mature devel
opment environment. Vesta hasn't yet acquired the rich collection of tools, utilities,
and other supporting facilities that inevitably grow around a system with a broad
user base. Thus, Vesta may appear "lean" to a prospective user or user community,
lacking as it does a graphical user interface, tools to synthesize simple models auto
matically, and tutorial user documentation. We note, however, that these deficiencies
didn't stop the Arafia group, who developed their own specialized versions of each of
these items adapted specifically for their development process. Perhaps other "early
adopters" of Vesta would do the same, or might generalize the Arafia group's work.
In this regard, we hope the open-source license under which Vesta is presently avail
able will encourage maturation of its facilities.

Conversion and Learning Cost. Because Vesta represents a new and integrated ap
proach to configuration management, software development groups will incur some
costs in switching to it. Groups with large code bases already under development
using existing configuration management systems will need conversion tools. (The
Arafia group chose to adopt Vesta at the beginning of their project when very little
of the chip design code base had been written, thereby minimizing what would oth
erwise have been a substantial conversion task.) We have explored designs for tools
to help users migrate their files from RCS, CVS, and similar systems to the Vesta
repository. We believe such tools would be fairly straightforward to create because
of the similarity of the versioning paradigms between Vesta and the other systems.
We also have explored designs for tools that could ease the conversion from Make
files to models. However, neither class of tools exists at present, which presents a
barrier to an organization with a substantial code base contemplating Vesta adoption.

Organizations also face a training cost in learning to use Vesta. We have tried to
design the repository tools to be simple and intuitive to use, but Vesta's distinctive
concepts inevitably cause them to differ somewhat from those of existing (Unix) sys
tems. SDL presents a more substantial training concern. We have worked to make the
language as familiar as possible to programmers from the C tradition, and we have
shown how to craft a collection of system models (our standard environment) that
causes the models users normally see and write to be little more than lists of source
files with a few lines of boilerplate. Nevertheless, experience strongly suggests that
any organization that adopts Vesta for a large project will need a local SDL expert,
and that it takes considerable time for a sophisticated user to understand the standard
environment models in sufficient depth to modify them. We note that several Arafia
users did acquire this knowledge, and a few became quite expert at writing models.
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Despite these reservations and uncertainties, we believe that Vesta represents
a significant advance in the methodology and technology of software system con
struction and configuration management. We remain optimistic that its demonstrated
strengths will appeal to development organizations with substantial code bases and
that it will win increasing acceptance in the years ahead.
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A.I Introduction

This appendix describes the formal syntax and semantics of the Vesta-2 System De
scription Language (SDL). Because this description is meant to be complete and
unambiguous, its treatment is rather formal. A less formal language reference is
available [55].

In Vesta, the instructions for building a software artifact are written as an SDL
program. Evaluating the program causes the software system to be constructed; the
program's result value typically contains the derived files produced by the evaluation.

SDL is a functional language with lexical scoping. Its value space includes
Booleans, integers, texts, lists (similar to LISP lists), sequences of name-value pairs
called bindings, closures, and a unique error value.

The language is dynamically typed; that is, types are associated with runtime
values instead of with static names and expressions. Even without static type check
ing, the language is strongly typed; an executing Vesta program cannot breach the
language's type system. The expected types of parameters to language primitives are
defined, and those types are checked when the primitives are evaluated. The language
includes provisions for specifying the types of user-defined function arguments and
local variables, but these type declarations are currently unchecked.

The language contains roughly 60 primitive functions. There is a _run_tool
primitive for invoking external tools like compilers and linkers as function calls.
External tools can be invoked from Vesta without modification.

Conceptually, every software artifact built with Vesta is built from scratch,
thereby guaranteeing that the resulting artifact is composed of consistent pieces.
Vesta uses extensive caching to avoid unnecessary rebuilding. Vesta records software
dependencies automatically. The techniques by which the implementation caches
function calls and determines dependencies are described in Chapter 8.
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A.2 Lexical Conventions

This section defines the meta-notation and terminals used in subsequent sections.
Section A.3 introduces each language construct by giving its syntax and semantics.
The syntax of the complete language is given in Section A.4.

A.2.t Meta-notation

Nonterminals of the grammar begin with an uppercase letter, are at least two charac
ters in length, and include at least one lowercase letter. Except for the four terminals
listed in Section A.2.2 below, each of which denotes a class of tokens, the terminals
of the grammar are character strings not of this form.

The grammar is written in a variant of BNF (Backus-Naur Form). The meta
characters of this notation are:

* +

The meaning of the metacharacters is as follows:

NT: :=Ex
Ex] I Ex2
[Ex]
{Ex}
Ex*
Ex*,
Ex*;
Ex+
ex-,
Ex+;

I Sf

Non-terminal NT rewrites to expression Ex
Ex] or Ex2

optional Ex
meta-parentheses for grouping
zero or more Ex's

zero or more Ex's separated by commas, trailing comma optional
zero or more Ex's separated by semicolons, trailing semi optional
one or more Ex's
one or more Ex's separated by commas, trailing comma optional
one or more Ex's separated by semicolons, trailing semi optional
the literal character or character sequence S

When used as terminals, square brackets, curly brackets, and vertical bar appear in
single quotes to avoid ambiguity with the corresponding metacharacters (i.e., '[',
'] " '{', '}', ' I ').

A.2.2 Terminals

The following names are used as terminals in the grammar. They denote classes of
tokens, and are defined precisely in Section A.4.3.

Delim A pathname delimiter. Either forward or backward slashes are allowed
within pathnames, but not both.

Integer An integer, expressed in either decimal, octal, or hexadecimal.
I d An identifier. An identifier is any sequence of letters, digits, periods,

and underscores that does not represent an integer. For example, foo and
36.foo are identifiers, but 36 and Ox36 are not.
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A text string. Texts are enclosed in double-quotes. They may contain
escape sequences and spaces.

Comments and white space follow C++ conventions. A comment either begins
with / / and ends with the first subsequent newline, or begins with / * and ends with
* / (the latter form does not nest). Of course, these delimiters are only recognized
outside text literals. White space delimits tokens but is otherwise ignored (except
that the Space character, the ASCII character represented by the decimal number 32,
is significant within text literals). The grammar prohibits white space other than the
Space character within text literals.

The names of the built-in functions begin with an underscore character, and the
identifier consisting of a single period (i.e., " . ") plays a special role in SDL. It is
therefore recommended that SDL programs avoid defining identifiers of these forms.

A.3 Semantics

The semantics of programs written in SDL are described by a function Eval that maps
a syntactic expression and a context to a value. That is, Eval(E, C) returns the value
of the syntactic expression E in the context C. In addition to syntactic expressions
(denoted by the non-terminal Expr in the grammar), the domain of Eval includes
additional syntactic constructs. Some of these additional constructs are defined by
the concrete grammar, while others are introduced as "intermediate results" during
the evaluation process. The latter are noted where they are introduced. Each value
returned by Eva! is in the Vesta value space, described in the next section. The context
parameter C to Eval is a value of type t.binding in the Vesta value space.

A.3.t Value Space

Values are typed. The types and values of the language are shown in Table A.t.
The values true.false, emptylist (the list of length zero), emptybinding (the bind

ing of length zero), and err are not to be confused with the language literals TRUE,

FALSE, <>, [J, and ERR that denote those values.

Type name
t.bool
tint
t.text
tJist
t.binding
t.closure
t.err
t.value

Values of the type

true,Jalse
integers
arbitrary byte sequences
sequences of zero or more arbitrary values
sequences of zero or more (name,value)pairs
closures, each of which is a triple (e,J,b)
err
union of all of the above types

Table A.t. The types and values of the Vesta language.
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The type t.bool contains the Boolean values true and false, denoted in the lan
guage by the literals TRUE and FALSE.

The type tint contains integers over at least the range _231 to 231 -1; the exact
range is implementation dependent.

The type t.text contains arbitrary sequences of 8-bit bytes. This type is used
to represent text literals (quoted strings) in SDL programs as well as the contents
of files introduced through the Files nonterminal of the grammar. Consequently, an
implementation must reasonably support the representation of large values of this
type (millions of bytes), but need not support efficient operations on large text values.

The type t.list contains sequences of values. The elements of a list need not be
of the same type.

The type t.binding contains sequences of pairs (ti,Vi), in which each ti is a non
empty value of type t.text, each Vi is an arbitrary Vesta value (i.e., of type t,value),
and the tt are all distinct. Note that bindings are sequences; they are ordered. The
domain of a binding is the sequence of names ti at its top level. Bindings nest.

The type t.closure contains closure values for the primitive operators and func
tions (defined in Section A.3.4) as well as for user-defined functions. In a closure
(e,j,b):

• e is a function body (i.e., a Block as per the grammar below);
• f is a list of pairs (ti,ei), where ti is a t.text value (a formal parameter name)

and e, is either the distinguished expression (emptyExpr) or an Expr (a default
parameter value); and

• b is a value of type t.binding (the closure context).

The type t.err consists of the single distinguished value err, denoted in the lan
guage by the literal ERR. Programmers can use this value as they choose; it has no
predefined semantics.

A.3.2 Type Declarations

The language includes a rudimentary mechanism for declaring the expected types of
values computed during evaluation. The grammar defines a small sub-language of
type expressions, which includes the ability to give names to types and to describe
aggregate types (lists, bindings, functions) with varying degrees of detail. Type ex
pressions may be attached to function arguments and results and to local variables,
indicating the type of the expected value for these identifiers and expressions during
evaluation.

The Vesta evaluator currently treats type names and type expressions as syntac
tically checked comments; it performs no other checking. Future implementations
may type-check expressions at run time and report an error if the value does not
match the specified type according to some as yet unspecified definition of what it
means for a value to "match" a type specification.

The syntax fragments and semantic descriptions in subsequent sections omit any
further reference to type expressions entirely.
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A.3.3 Evaluation Rules

The evaluation of a Vesta program corresponds to the abstract evaluation:

Eval( M([]) , C-initial)

where M is the closure corresponding to the contents of an immutable file (a sys
tem model) in the Vesta repository and C-initial is an initial context. M's model
should have the syntactic form defined by the nonterminal Model described in Sec
tion A.3.3.13 below. C-initial defines the names and associated values of the built-in
primitive operators and functions described in Section A.3.4 below.

The definition of Eval is by cases over the different syntactic forms that E can
take. Some cases (generally short forms provided solely to make SDL programs more
convenient to write) are defined indirectly, using syntactic rewrite rules that expand
them to match a directly defined case. Unless E is handled by either a rewrite rule or
an explicit evaluation rule, Eval(E, C) yields a runtime error. As mentioned above,
the domain of Eval includes the language generated by the concrete grammar as a
proper subset. Thus, in some of the cases below, the expression E can arise only as
an intermediate result of another case of Eval, These cases are explicitly noted.

The pseudo-code that defines the various cases of Eval and the primitive func
tions should be read like c++. That code assumes the declaration for the representa
tion of Vesta values shown in Table A.2. Note that the operator== is the one
invoked by uses of "= =" in the C++ pseudo-code. It is not to be confused with
the primitive equality operator defined on various Vesta types in Section A.3.4. The
pseudo-code also refers to the constants shown in Table A.3.

class val {
public:

operator int();
II converts Vesta t_int or t_bool to c++ int

val(int);
II converts a c++ integer to a Vesta t_int

int operator== (val);
II compares two Vesta values, returning true (1)
II if they have the same type and are equal, and
II false (0) otherwise

Table A.2. A C++ class declaration for Vesta values.

For convenience, the pseudo-code adopts the following notational conventions:

• Eval is defined by cases rather than by one c++ function with an enormous em
bedded case selection.
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static val true; II value of literal TRUE
static val false; II value of literal FALSE
static val emptylist; II value of literal < >
static val emptybinding; II value of literal [ ]

static val err; II value of literal ERR

TableA.3. Definitions of constants usedby thepseudo-code.

• Recursive references to Evalappear inlinein the same form that is usedto iden
tify the individual cases.
Primitive functions of the Vesta language, whose names begin with an under
score, are invoked inline from the pseudo-code as if they were ordinary C++
functions. Theprimitive operators of theVesta language are invoked in this way
too; for example, when the pseudo-code refers to operator+, it means the Vesta
primitive function, not the C++ operator. Note that some of the Vesta operators
are overloaded by type, but not by arity. Forexample, operator- is defined on
integers, texts, lists, and bindings, but it always takes two arguments.

.' Inthepseudo-code forrules that contain theterminal Id,thevariable i d denotes
thevalueof theIdrepresented as a ttext.

• If the pseudo-statement error is reached, evaluation halts witha runtime error
and appropriate error message. No value is produced.

Eachof the following sections presents a portion of the language syntax withits
associated evaluation rules. Thecomplete language syntax is givenin SectionA.4.

A.3.3.1 Expr

Syntax:

Expr · .- if Expr then Expr else Expr I Exprl
Exprl · .- Expr2 { => Expr2 }*
Expr2 · .- Expr3 { I I Expr3 }*
Expr3 · .- Expr4 { && Expr4 }*
Expr4 · .- Expr5 [ CompareOp Expr5
CompareOp · .- -- I ! = I < I > I <= I >=

Expr5 · .- Expr6 AddOp Expr6 }*
AddOp · .- + I ++ I

Expr6 · .- Expr7 { MulOp Expr7 }*
MulOp · .- *
Expr7 · .- [ UnaryOp ] Expr8
UnaryOp · .- - I
Expr8 · .- Primary [ TypeQual ]

Primary · .- ( Expr ) I Literal I Id I List
Binding I Select I Block I FuncCall

The grammar lists theoperators in increasing order of precedence. Thebinary oper
ators ateachprecedence level are left-associative.
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Evaluation Rules:

The evaluation rules for conditional, implication, disjunction, conjunction, compar
ison, AddOp, MulOp, UnaryOp, and parenthesized expressions are shown in Ta
bles A.4 and A.5. There are seven remaining possibilities for a Primary: Literal, Id,
List, Binding, Select, Block, and FuncCall. These are treated separately in subse
quent sections.

A.3.3.2 Literal

Syntax:

Literal

Evaluation Rules:

ERR I TRUE I FALSE I Text I Integer

Eval( ERR C)
Eval( TRUE C)
Eval( FALSE C)
Eval( Text C)
Eval( Integer, C)

err
true
false
the corresponding t_text value
the corresponding t_int value

In the Text evaluation rule, the C++ interpretation of escape characters is used.
In the Integer evaluation rule, evaluation halts with a runtime error if the integer is
too large or small to be represented by the implementation.

A.3.3.3 Id

Evaluation Rules:

Eval( Id , C) = _lookup(C, id)

As defined in Section A.3.4.5, _lookup(b, nm) is the value associated with the non
empty name nm in the binding b. The evaluation halts with a runtime error if nm is
empty or is not in b's domain.

A.3.3.4 List

Syntax:

List ::= < Expr*, >

The use of <, > as both binary operators and list delimiters makes the grammar
ambiguous. Section A.4.2 explains how the ambiguity is resolved.
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II conditional expression
Eval( if Exprl then Expr2 else Expr3 , C)
{

val b = Eval( Exprl , C);
if (_is_bool(b) == false) error;
if (b == true) return Eval( Expr2 , C);
else return Eval( Expr3 ' C);

II conditional implication
Eval( Exprl => Expr2 , C) =

{

val b = Eval( Exprl , C);
if (_is_bool(b) == false) error;
if (b == false) return true;
b = Eval( Expr2 , C);
if (_is_bool(b) == false) error;
return b;

II conditional OR (disjunction)
Eval( Exprl I I Expr2 , C) =

{

val b = Eval( Exprl , C);
if (_is_bool(b) == false) error;
if (b == true) return true;
b = Eval( Expr2 , C);
if (_is_bool(b) == false) error;
return b;

II conditional AND (conjunction)
Eval( Exprl && Expr2 , C) =
{

val b = Eval( Exprl , C);
if (_is_bool(b) == false) error;
if (b == false) return false;
b = Eval( Expr2 , C);
if (_is_bool(b) == false) error;
return b;

TableA.4. Evaluation rulesfor conditionals, implications, disjunctions, andconjunctions.
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II comparison
Eval( Exprl == Expr2 , C) =

operator==(Eval( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl != Expr2 , C) =
operator! = (Eval( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl < Expr2 , C) =
operator< (Eval( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl > Expr2 , C) =
operator> (Eval( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl <= Expr2 , C) =
operator<= (Eval ( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl >= Expr2 , C) =
operator>=(Eval( Exprl , C) , Eval( Exp r2 , C) )

I I AddOp
Eval( Exprl + Expr2 , C) =

operator+ (Eval( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl ++ Expr2 , C) =
operator++ (Eval ( Exprl , C) , Eval( Expr2 , C) )

II MulOp
Eval( Exprl - Expr2 , C) =

operator- (Eval( Exprl , C) , Eval( Expr2 , C) )

Eval( Exprl * Expr2 C) =,
operator* (Eval( Exprl , C) , Eval( Expr2 , C) )

II UnaryOp
Eval( Expr C) operator! (Eval ( Expr C) )

Eval( - Expr C) operator-(Eval( Expr C) )

II parenthesization
Eval( ( Expr ) , C) = Eval( Expr , C)

Table A.5. Evaluation rules for comparison, AddOp, MulOp, UnaryOp, and parenthesized
expressions.

Syntactic Rewrite Rules:

Here, '+' is the concatenation operator on lists.

Evaluation Rules:

Eval( <>
Eval( < Expr >

C)
C)

emptylist
_listl(Eval( Expr , C))

As defined in Section A.3.4.4, _listl(val) evaluates to a list containing the single
value val.
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A.3.3.5 Binding

Syntax:

Binding · .- J [' BindElem*, J] ,

BindElem · .- SelfNameB I NameBind
SelfNameB · .- Id
NameBind · .- GenPath = Expr
GenPath · .- GenArc { Delim GenArc }* [ Delim
GenArc · .- Arc I $ Id I $ ( Expr ) I % Expr %
Arc · .- Id I Integer I Text

Syntactic Rewrite Rules:

Id ----+ Id = Id
$ Id ----+ $ ( Id )

% Expr % ----+ $ ( Expr
GenArc Delim = Expr ----+ GenArc Expr
GenArc Delim GenPath = Expr ----+ GenArc = [ GenPath = Expr ]

The first rule enables names from the current scope to be copied into bindings
moresuccinctly. Forexample, thebinding value:

[ progs = progs, tests = tests, lib

can instead be written:

[ progs, tests, lib]

lib ]

The final rewrite ruleenables nestedsingle-element bindings to be written more
succintly. Forexample, thebinding value:

env_ovs
[ debug

[ Cxx = [ switches = [ compile
II -g3 II, optimize = II -0 II ]]]]]

can instead be written:

env_ovs/Cxx/switches/compile
[ debug = lI-g 3 11, optimize = 11-011 ]]

Evaluation Rules:

First, the rules forconstructing empty and singleton bindings:

Eval ( [ ]
Eval ( [ Arc Expr ]

C)
C)

emptybinding
_bindl(id, Eval( Expr , C))
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Here id is the t.text representation of Arc. The conversionfrom an Arc to a t.text
is straightforward. If the Arc is an Id, the literal characters of the identifier become
the text value. If the Arc is an Integer, the literal characters used to represent the
integer in the source of the model become the text value. If the Arc is a Text, the result
of Eval(Arc, C) is used. As defined in Section A.3.4.5, _bindl(id, v) evaluates to a
singleton binding that associates the non-empty t.text id with the value v.

The $ (Expr) syntax allows the name introduced into a binding to be computed:

Eval( [ $ ( Exprl ) = Expr2 ] , C) =
_bindl (Eval (Exprl' C), Eval( Expr2 , C))

When the field name is computed using the $ syntax, the expression must evaluate
to a non-empty t.text (see the _bindl primitive in Section A.3.4.5 below).

The following rule handles the case where multiple BindElem's are given.

Eval( [ BindEleml, ... , BindElemn ] , C) =

{

val bl = Eval( [ BindEleml ] , C);
val b2 = Eval( [ BindElem2, ... , BindElemn ] , C);
return _append(bl, b2);

As defined in Section A.3.4.5, _append(bi, b2) evaluates to the concatenation of
the bindings bl and b2; it requires that their domains are disjoint.

A.3.3.6 Select

Syntax:

Select
Selector
GenArc
Arc

Primary Selector GenArc
Delim I

Arc I $ Id I $ ( Expr
Id I Integer I Text

% Expr %

A Select expression denotes a selection from a binding, so the Primary must evaluate
to a binding value.

Syntactic Rewrite Rules:

Primary Selector $ Id
Primary Selector % Expr %

Evaluation Rules:

~ Primary Selector $
~ Primary Selector $

Id )
Expr

The Delim syntax selects a value out of a binding by name.

Eval( Primary Delim Arc, C) =
_lookup (Eval( Primary, C), id)
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Here id is the t.text value of Arc, as defined in Section A.3.3.5 above.
The $ (Expr) syntax allows the selected name to be computed:

Eval( Primary Delim $ ( Expr ) , C)
_lookup (Eval( Primary, C), Eval( Expr , C))

The! syntax tests whether a name is in a binding's domain:

Eval( Primary! Are, C)
_defined (Eval( Primary, C), id)

Again, id is the t.text value of Arc. As defined in Section A.3.4.5, _defined(b,
nm) evaluates to true if nm is non-empty and in b's domain, and to false otherwise.
As above, the $ (Expr) syntax can be used to compute the name:

Eval( Primary! $ (Expr ,C) =

_defined (Eval( Primary, C), Eval( Expr , C))

In both cases where the GenArc is a computed expression, the Expr must evaluate to
a t.text,

A.3.3.7 Block

Syntax:

Block
Stmt
Result

, {' { stmt ; }* Resu 1 t ; '}'
Assign I Iterate I FuncDef I TypeDef
{ value I return } Expr

Syntactic Rewrite Rules:

return Expr ~ value Expr

That is, the keywords return and value are synonyms, provided for stylistic
reasons. The return/value construct must appear at the end of a Block; there
is no analog of the C/C++ return statement that terminates execution of the function
in which it appears.

Evaluation Rules:

Since SDL is functional, evaluation of a statement does not produce side-effects, but
rather produces a binding. Evaluation of a block occurs by augmenting the context
with the bindings produced by evaluating the Stmts, then evaluating the final Expr in
the augmented context.
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Eval(
{

Stmtli ... i Stmtni value Expr , C)

val b = Eval( { Stmtli ... i Stmt n } , C) i

return Eval( Expr , operator+(C, b))i

Notice that this second rule introduces an argument to Eval in the "extended" lan
guage that is not generated by any non-terminal of the grammar.

A.3.3.8 Stmt

Evaluation Rules:

Evaluating a Stmt or sequence of Stmts produces a binding. Note that the binding
resulting from the evaluation of a sequence of Stmts is simply the overlay (operator
'+') of the bindings resulting from evaluating each Stmt in the sequence, and does
not include the context C.

Eval(

Eval(
{

} , C) = emptybinding

Stmtli Stmt2i ... i Stmt n } , C)

val bO = Eval( Stmtl , C)i

val bI = Eval( { Stmt2i . . . i Stmt n }, operator+(C, bO))i
return operator+(bO, bI)i

These rules apply to constructs in the "extended" language. There are three possi
bilities for a Stmt: Assign, Iterate, and FuncDef. They are covered in the next three
sections.

A.3.3.9 Assign

Since SDL is functional, assignments do not produce side-effects. Instead, they in
troduce a new name into the evaluation context whose value is that of the given
expression.

Syntax:

Assign
Op
AddOp
MulOp

Id [ TypeQual ] [ Op ]
AddOp I MulOp
+ I ++ I

*

Expr
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Syntactic Rewrite Rules:

Id Op

Evaluation Rules:

Expr ---t Id Id Op Expr

Eval( Id = Expr , C) = _bindl(id, Eval( Expr , C))

where id is the t.text representation of I d.

A.3.3.10 Iterate

The language includes expressions for iterating over both lists and bindings. There
is also a _map primitive defined on lists (Section A.3.4.4) and bindings (Sec
tion A.3.4.5). _map is more efficient but less general than the Iterate construct.

Syntax:

Iterate
Control
IterBody

foreach Control in Expr do IterBody
Id I I [' Id = Id ']'
Stm t I '{' Stm t +; '}'

The two Control forms are used to iterate over lists and bindings, respectively.

Evaluation Rules:

Conceptually, the loop is unrolled n times, where n is the length of the list or binding
resulting from the evaluation of Expr. The evaluation rules for iterating over lists and
bindings are shown in Table A.6. Note that the iteration variables (that is, Id, Idl,
and Id2 in the Table) are not bound in the binding that results from evaluating the
foreach statement. However, any assignments made in the loop body are included
in the result binding.

Iteration statements are typically used to walk over or collect parts of a list or
binding. For example, Table A.7 presents functions for reversing a list and for count
ing the number of leaves in a binding.

A.3.3.11 FuncDef

Syntax:

The function definition syntax allows a suffix of the formal parameters to have asso
ciated default values.

FuncDef
Formals
FormalArgs

Id Forrnals+ [ TypeQual ] Block
( FormalArgs )
TypedId* ,
{TypedId Expr }*,
TypedId { TypedId}* { , TypedId Expr }+
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II iteration with single-statement body
Eval( foreach Control in Expr do Stmt , C) =

Eval( foreach Control in Expr do { Stmt } , C)

II iteration over a list
Eval( foreach Id in Expr do { Stmtl;
{

vall = Eval( Expr, C);
if (_is_list(l) == false) error;
t_text id = Id; II identifier Id as at_text
val r = emptybinding;
for (; ! (1 == emptylist); 1 = _tail(l)) {

val rl = operator+(C, r);
rl = operator+(rl, _bindl(id, _head(l)));
r = operator+(r, Eval( { Stmtl; ... ; Stmt n } , rl));

return r;

II iteration over a binding
Eval(foreach [Idl=Id2] in Expr do {Stmtl; ... ;Stmt n } , C)
{

val b = Eval( Expr, C);
if (_is_binding (b) == false) error;
t_text idl = Idl; II identifier Idl as at_text
t_text id2 = Id2; II identifier Id2 as at_text
val r = emptybinding;
for (; ! (b == emptybinding); b = _tail(b)) {

val rl = operator+(C, r);
rl = operator+(rl, _bindl(idl, _n(_head(b))));
rl = operator+(rl, _bindl(id2, _v(_head(b))));
r = operator+(r, Eval( { Stmtl; ... ; Stmt n } , rl));

return r;

TableA.6. Evaluation rules for iterating overlists and bindings.

Thethree alternatives forFormalArgs correspond to thecases in whichno arguments
are defaulted, all arguments are defaulted, andsome arguments are defaulted.

Note that the syntax allows multiple Formals to follow the function name. As
therules below describe, theuse of multiple Formals produces a sequence of curried
functions, all butthe first of whichis anonymous.
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/**nocache**/
reverse_list (1: list): list
{

res: list = <>;
foreach elt in 1 do

res = <elt> + res;
return res;

/**nocache**/
count_leaves(b: binding): int
{

res: int = 0;
foreach [ nm = val ] in b do

res += if _is_binding(val)
then count_leaves(val) else 1;

return res;

TableA.7.Two example functions that use foreach to iterate over a list and a binding.

Evaluation Rules:

Eval( Id Formalsl ... Formals n Block, C)
_bind1(id, Eval( e , C1))

where:

• e = LAMBDA Formalsl ... LAMBDA Formals n Block
• Cl = operator+(C, _bindl(id, Eval( e , Cl)))
• id is the t.text representation of I d.

Notice the recursive definition of C1. This allows functions to be self-recursive,
but not mutually recursive. Although this recursive definition looks a little odd, it can
be implemented by the evaluator by introducing a cycle into the context Cl. This is
the only case where any Vesta value can contain a cycle (the language syntax and
operators do not allow cyclic lists or bindings to be constructed), and the cycle is
invisible to clients. There is no practical difficulty in constructing the cycle because,
as will be clear shortly, the "evaluation" of a LAMBDA is purely syntactic.

Also note that this rule produces a LAMBDA construct in the "extended" language
that is not generated by any non-terminal of the grammar. The evaluation of LAMBDA
produces a t.closure value (e,j,b) as described in Section A.3.1.

The following is the simple case of LAMBDA, where all actual parameters must
be given in any application of the closure. The reason for the restriction on the use
of " . " as a formal parameter is treated in the next section.

Eval( LAMBDA (Idl, ... , Idm )

LAMBDA Formals2 ... LAMBDA Formals n Block, C)
<LAMBDA Formals2 ... LAMBDA Formals n Block, f, C>
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where f is a list of pairs (idi, (emptyExpr)) such that id, is the t.text representation
of I d i, for i in the closed interval [1,m]. If any of the identifiers I d i is " . ", the
evaluation halts with a runtime error.

In the typical case where only one set of Formals is specified (that is, n == 1), the
first element of the resulting closure value is simply a Block.

Next is the general case of LAMBDA, in which "default expressions" are given
for a suffix of the formal parameter list. Functions may be called with fewer actuals
than formals if each formal corresponding to an omitted actual includes an expres
sion specifying the default value to be computed. When the closure is applied, if an
actual parameter is missing, its formal's expression is evaluated (in the context of the
LAMBDA) and passed instead. The next section (FuncCall) defines this precisely.

Eval(
LAMBDA (Ld j , ••• Idk, Idk+l=Exprk+l, ... Idm=Expr m)
LAMBDA Formals2 LAMBDA Formals n Block , C) =

<LAMBDA Formals2 LAMBDA Formals n Block, f, C>

wheref is a list of pairs (idi,expri) such that:

• id, is the t.text representation of I d i- for i in [1,m] ,
expri is (emptyExpr), for i in [I,k], and

• expri is Expr i» for i in [k+ I,m].

As before, if any of the identifiers I d i is " . ", the evaluation halts with a runtime
error.

A.3.3.12 FuncCall

Syntax:

FuncCall
Actuals

Evaluation Rules:

Primary Actuals
( Expr*, )

The function call mechanism provides special treatment for the identifier consisting
of a single period, called the currentenvironment and pronounced "dot". Dot is typ
ically assigned a binding that contains the tools, switches, and file system required
for the rest of the build. The initial environment, C-initial(see Section A.3.3 above),
does not bind dot (thatis,_defined(C-initial, II. II) is false).

When a function is called, the context in which its body executes may bind " . "
to a value established as follows:

if the function is defined with n formals and called with n or fewer actuals, then
the value bound to the implicit formal parameter " . " is the value of " . " at the
point of call;
if the function is defined with n formals and called with n + 1 actuals, then the
value bound to the implicit formal parameter" . " is the value of the last actual.
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Thus, the binding for " . ", if any, is passed through the dynamic call chain until it
is altered either explicitly by an Assign statement (Section A.3.3.9) or implicitly by
calling a function with an extra actual parameter. The pseudo-code shown in Ta
ble A.8 makes this precise. In this code, the comparison with (emptyExpr) has not
been formalized, but it should be intuitively clear.

A.3.3.13 Model

Syntax:

Model

Evaluation Rules:

Files Imports Block

The nonterminal Model is treated like the body of a function definition (i.e., like a
FuncDef (Section A.3.3.11), but without the identifier naming the function and with
an empty list of formal parameters). More precisely:

Eval( Files Imports Block, C)
{

val CO = Eval( Files Imports, emptybinding);
return Eval( LAMBDA () Block, _append (CO , C));

As this rule indicates, the Files and Imports constructs are evaluated in an empty
context, and they add to the closure context in which the model's LAMBDA is evalu
ated. In practice, the context C will always be the initial context C-initial when this
rule is applied (cf. Sections A.3.3 and A.3.3.15).

The Files nonterminal introduces values corresponding to the contents of ordi
nary files and directories. The Imports nonterminal introduces closure values corre
sponding to other SDL models.

The evaluation rules handle Files and Imports clauses by augmenting the context
using the _append primitive, thereby ensuring that the names introduced by these
clauses are all distinct, just as if the Files and Imports clauses of the Model were
a single binding constructor. The Files and Imports clauses are evaluated indepen
dently:

Eval( Files Imports, C) =

_append (Eval( Files, C), Eval( Imports, C))

The following two sections give the rules for evaluating Files and Imports clauses
individually. It should be noted that the evaluation context C is ignored in those rules.

A.3.3.14 Files

A Files clause introduces names corresponding to files or directories in the Vesta
repository. Generally, these files or directories are named by relative paths, which are
interpreted relative to the location of the model containing the Files clause. Absolute
paths are permitted, though they are expected to be rarely used.
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Eval( Primary ( Exprl, ... , Expr n ) , C)
{

II number of formals
II too many actuals
II t_binding
II t_list (of (t, e) pairs)

val cl = Eval( Primary, C);
if (_is_closure (cl) == false)

1* cl.e is the function body,
cl.b is the context *1

int m = _length(cl.f);
if (n > m + 1) error;
val Cl = cl.b;
val f = cl.f;

error;

cl.f are the formals, and

II i-th formal
II corresponding actual

1* augment Cl to include formals bound to corresponding
actuals *1

int i;
for (i = 1; i <= m; i++)

val form = _head(f);
val act;
if (i <= n)

act = Eval( Expri , C); II value for i-th actual
else {

if (form.e == <emptyExpr» {
II a required actual is missing
error;

}

act = Eval( form.e , cl.b); II defaulted formal value
}

Cl = operator+(Cl, _bindl(form.t, act));
f = _tail(f);

II bind 11.11 in Cl
val dot;
if (n <= m)

dot _lookup(C, II.II}; II inherit 11.11 from C
else

dot Eval( Expr n ,C); II last actual value supplied
Cl = operator+(Cl, _bindl(II.II, dot));

1* Cl is now a suitable environment. If the closure is
a primitive function, then invoke it by a special
mechanism internal to the evaluator and return the
value it computes. Otherwise, perform the following:

*1
return Eval( cl.e , Cl);

Table A.8. Evaluation rule for FuncCall.
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Syntax:

Files
FileClause
FileItern
FileSpec
FileBinding

DelirnPath
Path
Arc

FileClause*
files FileItern*;
FileSpec I FileBinding
[ Arc = ] DelirnPath
Arc = I [' FileSpec*, ']'

[ Delirn ] Path [ Delirn
Arc { Delirn Arc }*
Id I Integer I Text

Each FileItem in a Files clause takes one of two forms: a FileSpec or a FileBind
ing. Each form introduces (binds) exactly one name. In the FileSpec case, the name
corresponds to the contents of a single file or directory; in the FileBinding case, the
name corresponds to a binding consisting of perhaps many files or directories. In
both cases, the identifier introduced into the Vesta naming context or the identifiers
introduced into the binding can be specified explicitly or derived from an Arc in the
Path.

For example, consider the following files clause:

files
scripts = bin;
c_files = [ utils.c, rnain.c ];

Suppose the directory containing this model also contains a directory named bin
and files named utils. c and main. c. Then this files clause introduces the
two names scripts and c_files into the context. The former is bound to a
binding whose structure corresponds to the bin directory. The latter is bound to a
binding that maps the names uti Is . c and main. c to the contents of those files,
respectively. The file contents are values of type t.text,

Syntactic Rewrite Rules:

When multiple FileItem's are given in a FileClause, the files keyword simply
distributes over each of the FileItem's. That is:

files FileIternl; ... ; FileIternn ;

files FileIternl;

files FileIternn ;

When the initial Arc is omitted from a FileSpec, the rightmost Arc of the path is
used in its place. That is,

files [ Delirn ] { Arc Delirn }* Arc [ Delirn ];

files Arc [ Delirn ] { Arc Delirn }* Arc [ Delim ];
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Evaluation Rules:

Multiple FileClauses are evaluated independently:

Eval( FileClauseo FileClausel ... FileClause n , C)
{

val C2 = Eval( FileClausel ... FileClausen , C)i

return _append (Eval( FileClauseo , C), C2)i

That leaves only two cases to consider: FileSpec (in which the initial Arc is specified)
and FileBinding.

II FileSpec
Eval( files Arc

where:

DelimPath , C) _bindl (id, v)

• id is the t.text representation of Arc, as defined in Section A.3.3.5 above.
• If DelimPath begins with a Delim, it is interpreted as an absolute path, which

must nevertheless resolve to a file or directory in the Vesta repository. If De
limPath does not begin with a Delim, it refers to a file or directory named relative
to the directory of the enclosing Model.

• If the entity named by DelimPath is a file, v is a t.text value formed by taking the
file's contents. If DelimPath names a directory, v is a t.binding value constructed
from the contents of the directory, treating the files (if any) in the directory as
above (i.e., as t.text values) and the directories (if any) recursively (i.e., as bind
ings). The members of the resulting binding are in an unspecified order. If De
limPath does not correspond to either an extant file or a directory, the evaluation
halts with a runtime error.

II FileBinding
Eval( files Arc = [ FileSpecl, ... , FileSpec n ] , C)

_bindl(id, Eval( files FileSpecli ... i FileSpec n , C))

Again, id is the t.text representation of Arc.
The FileBinding form of the Files clause provides a convenient way to create a

binding containing multiple FileSpecs. Without this construct, it would be necessary
to name each file twice, once in the FileSpec and once in a subsequent binding con
structor. Making a binding with FileBinding is semantically similar to constructing a
file system directory, with the additional property that there is an enumeration order
for the component files.

Notice that the grammar and evaluation rules given above for FileSpec and File
Binding allow a general Arc on the left-hand side of each equal sign, not just an
Id. This simplifies the definitions and rewrite rules. However, it would be useless to
write constructs like the following, which introduce names that cannot be referenced
in the body of the model:
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files
33;
34 = 34;
"hash-table.c";
"foo bar II = [ faa, bar ];

Therefore, the context created by a Files clause is constrained to bind only names
that are legal identifiers; that is, names that match the syntax of the Id token.

If files whose names are not legal identifiers must be introduced, they can either
be given legal names using the equal sign syntax or embedded in a binding. For
example:

II Choose a legal name
files

f33 = 33;
f34 = 34;
hash_table.c = "hash-table.c";
faa_bar = [ faa, bar ];

33, 34 i.
[ "hash-table.c" i.src

II Embed in a binding
files

f =

A.3.3.15 Imports

The Imports clause enables one SDL model to reference and use others; that is, it
supports modular decomposition of SDL programs.

Syntax:

Imports
ImpClause

::= ImpClause*
::= ImpIdReq I ImpIdOpt

There are two major forms of the Imports clause: one where identifiers are re
quired (ImpIdReq), and one where they are optional (ImpIdOpt). Both forms have
two sub-forms in which either a single model or a list of models may be imported.

First, consider the ImpIdReq case. This form is typically used to import models
in the same package as the importing model. Each ImpItemR in the ImpIdReq clause
takes one of two forms: an ImpSpecR or an ImpListR. Each form binds exactly one
name.

ImpIdReq
ImpItemR
ImpSpecR
ImpListR

import ImpItemR*;
ImpSpecR I ImpListR
Arc DelimPath
Arc = J [' ImpSpecR*, J] ,

DelimPath
Path
Arc

[ Delim ] Path [ Delim
Arc { Delim Arc }*
Id I Integer I Text
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In the ImpSpecR case, the name is bound to the t.closure value that results from
evaluation of the contents of a file according to the Model evaluation rules of Sec
tion A.3.3.13. For example, consider the Import clause:

import self = progs.veSi

This clause binds the name sel f to the closure corresponding to the local progs.ves
model in the same directory as the model in which it appears.

In the ImpListR case, the name is bound to a binding of such values. For example:

import sub =
[ progs = src/progs.ves, tests = src/tests.ves ]i

This clause binds the name sub to a binding containing the names progs and
tests; these names within the binding are bound to the closures corresponding
to the models named progs. yes and tests. yes in the package's src subdi
rectory.

Because the Imports clause often mentions several files with names that share a
common prefix, a syntactic form is provided to allow the prefix to be written once.
This is the ImpldOpt form. It is used to import models from other packages. The
semantics are defined so that many identifiers are optional; when omitted, they de
fault to the name of the package from which the model is being imported. As in the
ImpldReq case, ImpldOpt has forms for importing both single models and lists of
multiple models.

ImpIdOpt
ImpItemO
ImpSpecO
ImpListO

from DelimPath import ImpItemO*i
ImpSpecO I ImpListO
[ Arc = ] Path [ Delim ]
Arc = '[' ImpSpecO*, ']'

Here are some examples of ImpIdOpt imports:

from /vesta/west.vestasys.org/vesta import
cache/12/build.ves;
libs = [ srpc/2/build.ves, basics/5/build.ves ];

This construct binds the name cache to the closure corresponding to version 12 of
that package's bui ld. yes model, and it binds the name 1 ibs to a binding con
taining the names s rpc and basics, bound to versions 2 and 5 of those package's
bui ld. yes models. (As the evaluation rules below describe, the three occurrences
of " / bu i 1d . ves" in this example could actually have been omitted.)

Syntactic Rewrite Rules:

When multiple ImpltemR's are given in a ImpldReq, the import keyword dis
tributes over each of the ImpltemR's. That is:

import ImpSpec!; ... ; ImpSpec n ;
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import ImpSpecli

import ImpSpecni

Similarly, the f rom clause distributes over the individual imports of an ImpId
Opt. Inparticular:

from DelimPath import ImpItemOli

from DelimPath import ImpItemOli

from DelimPath import ImpItemOni

ImpItemOni

Theuse of f rom makes it optional to supply a name fortheclosure value being
introduced; if thename is omitted, it is derived from thePath following the impor t
keyword as follows:

from DelimPath import
[ Arc 1 = ] [ Delim ] Arc2 { Delim Arc }* [ Delim ]

import Arc =

DelimPath Delim Arc2 { Delim Arc }* [ Delim ]

where the Arc to the left of the equal sign is Arc 1 if it is present and is Arc2

otherwise. Similarly:

from DelimPath import Arc = [

[ Ar c 1l ] [ Delim ] Arc21 Delim Arc }* Delim ],

[ Arcl n Delim Arc2 n Delim Arc }* Delim ] ]

import Arc = [

Arc! DelimPath Delim Arc21 {Delim Arc }* Delim ],

Arc n DelimPath Delim Arc2 n {Delim Arc }* Delim ] ]

where Arci is Arc1i if it is present and is Arcz, otherwise.

Evaluation Rules:

Multiple ImpClause's are evaluated independently:

Eval( ImpClauseo ImpClausel
{

ImpClause n , C) =

val C2 = Eval( ImpClausel ImpClausen, C);
return _append (Eval( ImpClauseo , C), C2)i
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This leaves two fundamental forms of the Imports clause, whose semantics are de
fined as follows:

II ImpSpecR
Eval( import Arc = DelimPath , C) =

_bindl(id, Eval( model, C-initial))

where:

• id is the t.text representation of Arc, as defined in Section A.3.3.5 above.
• Let! be the sequence of Delims and Arcs that constitute the DelimPath.

1. If! does not begin with a Delim, prepend "De 1 irn Path0 De1 irn" to f,
where PathOnames the directory containing the Model in which this Imports
clause appears.

2. Look up the path! in the Vesta repository. (See Section A.3.3.16 below.) Iff
names a directory, append a Delim (iff doesn't already end in one) and the
string "bu i 1d . ves", then look up the augmented path f in the repository
again. If f does not name a directory and its final element does not end in
" . ves", append the string" . ves" to the final element off, and look it up in
the repository again.

• model is the SDL Model represented by the contents of the file in the Vesta
repository named by the sequence f. If no such expression can be produced (e.g.,
the file doesn't exist, or can't be parsed as an expression), evaluation halts with a
runtime error.

II ImpListR
Eval( import Arc = [ ImpSpecRl, ... , ImpSpecRn ] , C)

_bindl(id, Eval( import ImpSpecRli ... i ImpSpecRn , C))

Again, id is the t.text representation of Arc.
As with the Files clause, and for the same reason, the context created by an

Imports clause is constrained to bind only names that are legal identifiers; that is,
names that match the syntax of the Id token.

A.3.3.16 File Name Interpretation

The evaluation rules for the Files and Imports clauses do not specify how the se
quence of Arcs and Delims making up a DelimPath is converted into a file name in
the underlying file system. While this is somewhat system-dependent, it is neverthe
less intended to be intuitive. In particular,

Multiple adjacent Delims are replaced by a single one. (The grammar above
doesn't permit adjacent Delims, but they can be produced by the rewrite rules.)

• SDL syntax allows the arbitrary intermingling of" /" and "v" as arc separators.
However, the implementation actually requires that Vesta programs use one or
the other uniformly. When creating a file name from a sequence of Arcs and
Delims, the implementation inserts the appropriate arc separator required by the
underlying file system. The choice is not influenced by the choice of Delim that
appears in the SDL program.
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• The grammar permits an Arc to be an arbitrary Text. An Arc in a file name,
however, is forbidden to contain a Delim character (i.e., forward or backward
slash), and the Arcs" .. " and" . " are forbidden in file names as well.

A.3.3.17 Pragmas

The evaluator recognizes two stylized comments, or pragmas, which can be used
to control how it caches calls of user-defined functions. The two pragmas are
I**nocache** I and I**pk** I.

By default, evaluations of all user-defined functions are cached. However, if a
function definition is immediately preceded by 1* *nocache** I, then calls to that
function are not cached. The 1* *nocache** I pragma is useful to avoid cluttering
the cache with values that would be faster to recompute than to look up.

By default, the primary key (see Section 8.4.3) used to index the function cache
is a combination of the function body being called and the values of all actual argu
ments that are not composite values (that is, are not lists, bindings, or closures). If
the 1* *pk* * I pragma appears immediately before the name of a function's formal
parameter, the value of the corresponding actual parameter is also included in the
function's primary key, even if it is a composite value. The 1* *pk* * I pragma is
useful when a function's result is known to depend on the entire composite value and
leaving this value out of the computation would result in a large number of different
cache entries having the same primary key.

A.3.4 Primitives

The primitive names and associated values described below are provided by the SDL
evaluator in C-initial, the initial context. Most of these values are closures with empty
contexts; that is, they are primitive functions.

In the descriptions that follow, the notation used for the function signatures fol
lows C++, with the result type preceding the function name and each argument type
preceding the corresponding argument name. Defaulting conventions also follow
C++; if an argument name is followed by "= val ue", then omitting the corre
sponding actual argument is equivalent to supplying value.

Some of the function signatures use the C++ operator definition syntax, which
should be understood as defining a function whose name is not an Id in the sense
of the grammar above. Such operator names cannot be rebound. These operators are
frequently overloaded, as the descriptions below indicate. Uses of these built-in Vesta
primitives within C++ code are denoted by the operator syntax.

The pseudo-code of this section assumes the definition of the Vesta value class
given at the start of Section A.3.3. Invocation of a Vesta operator primitive within
the pseudo-code is denoted by the operator syntax. All other operators appearing
in the pseudo-code denote the C++ operators.

In these descriptions, the argument types represent the natural domain; the result
type is the natural range. If a primitive function is passed a value that lies outside
its natural domain, evaluation halts with a runtime error. This type-checking occurs
when the primitive function is called, not before.
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A.3.4.1 Functions on Type t.bool

Recall that true andfalse are Vesta values, not C++ quantities.

t_bool
operator==(t_bool bl, t_bool b2)

Returns true if bl and b2 are the same, andfalse otherwise.

t_bool
operator! = (t_bool bl, t_bool b2)

operator! (operator==(bl, b2))

t_bool
operator! (t_bool b)

Returns the logical complement of b.

A.3.4.2 Functions on Type tint

t_bool
operator==(t_int iI, t_int i2)

Returns true if il and i2 are equal, andfalse otherwise.

t_bool
operator!=(t_int iI, t_int i2) =

operator! (operator==(il, i2))

tint
operator+(t_int iI, t_int i2)

Returns the integer sum il + i2 unless it lies outside the implementation-defined
range, in which case evaluation halts with a runtime error.

t_int
operator-(t_int iI, t_int i2)

Returns the integer difference il - i2 unless it lies outside the implementation-defined
range, in which case evaluation halts with a runtime error.

t_int
operator-(t_int i)

operator-(O, i)

tint
operator*(t_int iI, t_int i2)

Returns the integer product il * i2 unless it lies outside the implementation-defined
range, in which case evaluation halts with a runtime error.
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t_int
_div(t_int iI, t_int i2)

Returns the integer quotient i1 / i2 (that is, the floor of the real quotient) unless it
lies outside the implementation-defined range, in which case evaluation halts witha
runtime error. Thiserror is possible only if i2 is zero orif i2 is -1 and i1 is thelargest
implementation-defined negative number.

t_int
_ffiod(t_int iI, t_int i2) =

operator-(il, operator*(_div(il,i2), i2))

t_bool
operator«t_int iI, t_int i2)

Returns true if and only if i1 is less than i2.

t_bool
operator>(t_int iI, t_int i2)

operator«i2, il)

t_bool
operator<=(t_int iI, t_int i2)

Returns true if and only if i1 is atmost i2.

t_bool
operator>=(t_int iI, t_int i2)

operator<=(i2, il)

tint
_ffiin(t_int iI, t_int i2)
{ if (operator«il, i2)) return il; else return i2; }

t_int
_ffiax(t_int iI, t_int i2)
{ if (operator>(il, i2)) return il; else return i2; }

A.3.4.3 Functions on Type t.text

Thefirst byteof a t.text value has index O.

t_bool
operator==(t_text tl, t_text t2)

Returns true if t1 and t2 are identical bytesequences, andfalse otherwise.

t_bool
operator!=(t_text tI, t_text t2)

operator! (operator==(tl, t2))
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t_text
operator+(t_text tI, t_text t2)

Returns the byte sequence formed by appending the byte sequence t2 to the byte
sequence t1 (concatenation).

t_int
_length(t_text t)

Returns thenumber of bytes in thebyte sequence t.

t_text
_elem(t_text t, t_int i)

If 0 :::; i < _1 ength ( t) , returns a byte sequence of length 1 consisting of byte i of
thebyte sequence t. Otherwise, returns theempty byte sequence.

t_text
_sub(t_text t, t_int start
{

0, tint len _length(t) )

_length (t) ;
_min (_max(start, 0)), w);
_min(i + _max (len, 0), w);
i <= j <= _length(t); extract [i .. j)

r =

i <

int w
int i
int j

II 0 <=

t_text

for (;
return r;

II II.,
j; i++) r = operator+(r, _elem(t, i));

}

Extracts from t and returns abytesequence of length len beginning atbytestart. Note
theboundary casesdefined by thepseudo-code; _sub produces a runtime error only
if it is passedarguments of thewrong type.

t_int
_find(t_text t, t_text p, t_int start 0)
{

int j _length(t) - _length(p);
if (j < 0) return -1;
int i _max(start, 0);
if (i > j) return -1;
for (; i <= j; i++) {

int k = 0;
while (k < _length(p) &&

_elem(t, i+k) == _elem(p, k)) k++;
if (k _length(p)) return i;

return -1;
}

Finds the leftmost occurrence of p in t that begins at or after position start. Returns
theindex of the first byteof theoccurrence, or -1 if noneexists.
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t_int
_findr(t_text t, t_text p, t_int start 0)
{

int j _length(t) - _length(p);
if (j < 0) return -1;
int i _max(start, 0);
if (i > j) return -1;
for (; i <= j; j--) {

int k = 0;
while (k < _length(p) &&

_e1em(t, j+k) == _e1em(p, k)) k++;
if (k _length(p)) return j;

return -1;
}

Finds the rightmost occurrence of pin t that begins at or after position start. Returns
the index of the first byte of the occurrence, or -1 if none exists.

A.3.4.4 Functions on Type tJist

t_boo1
operator==(t_1ist 11, t_1ist 12)

Returns true if 11 and 12 are lists of the same length containing (recursively) equal
values, andfa1se otherwise.

t_boo1
operator!=(t_list 11, t_list 12)

operator! (operator==(11, 12))

t list
_list1(t_va1ue v)

Returns a list containing a single element whose value is v.

t_va1ue
_head(t_1ist 1)

Returns the first element of 1. If 1is empty, evaluation halts with a runtime error.

t_1ist
_tai1(t_1ist 1)

Returns the list consisting of all elements of 1, in order, except the first. If 1is empty,
evaluation halts with a runtime error.

t_int
_length(t_1ist 1)

Returns the number of (top-level) values in the list 1.

t_va1ue
_e1em(t_1ist 1, t_int i)

Returns the i-th value in the list 1. If no such value exists, evaluation halts with a
runtime error. The first value of a list has index O.
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t_1ist
_append(t_1ist 11, t_1ist 12}

Returns the list formed by appending 12to 11.

t_1ist
operator+(t_1ist 11, t_1ist 12)

Equivalent to _append (11, 12).

t_1ist
_sub(t_1ist 1, t_int start
{

0, t_int len _length(l})

_length(l}i
_min <_max (start, 0)), W)i

_min(i + _max (len, 0), W)i

i <= j <= _length(l)i extract [i .. j)
r = empty1isti
i < j; i++) r = operator+(r, _e1em(l, i);

int W

int i
int j

II 0 <=
t_1ist
for (i

return ri

}

Returns the sub-list of 1 of length len starting at element start. Note the boundary
cases defined by the pseudo-code; _sub produces a runtime error only if it is passed
arguments of the wrong type.

t_1ist
_map(t_c1osure f, t_1ist 1)
{

t_1ist res = empty1isti
for (i ! (1 == empty1ist)i 1 = _tai1(l)) {

t_va1ue v = f(_head(l))i II apply the closure IIfll
res = operator+(res, v);

return res;
}

Returns the list that results from applying the closure f to each element of the list 1,
and concatenating the results in order. The closure f should take one value (of type
t,value) as argument and return a value of any type. Iff has the wrong signature, the
evaluation halts with a runtime error.

t_1ist
-par_map(t_c1osure f, t_1ist 1)

Formally equivalent to _map, but the implementation may perform each application
off in a separate parallel thread. External tools invoked by _run_tool in different
threads may be run simultaneously on different machines. If a runtime error occurs
in one thread, the other threads may still run to completion before the evaluation
terminates.
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A.3.4.5 Functions on Type t.binding

t_bool
operator==(t_binding bI, t_binding b2)

Returns true if bl and b2 are bindings of the same length containing the same names
(in order) bound to (recursively) equal values, andfalse otherwise.

t_bool
operator! = (t_binding bI, t_binding b2)

operator! (operator==(bl, b2))

t_binding
_bindI(t_text n, t_value v)

If n is not empty, returns a binding with the single (name, value) pair (n, v). If n is
empty, the evaluation halts with a runtime error.

t_binding
_head(t_binding b)

Returns a binding with one (name, value) pair equal to the first element of b. If b is
empty, the evaluation halts with a runtime error.

t_binding
_tail (t_binding b)

Returns the binding consisting of all elements of b, in order, except the first. If b is
empty, the evaluation halts with a runtime error.

t_int
_length(t_binding b)

Returns the number of (name, value) pairs in b.

t_binding
_elem(t_binding b, t_int i)

Returns a binding consisting solely of the i-th (name, value) pair in the binding b.
If no such pair exists, the evaluation halts with a runtime error. The first pair of a
binding has index O.

t_text
_n(t_binding b)

If _length (b) = 1, returns the name part of the (name, value) pair that consti
tutes b. Otherwise, the evaluation halts with a runtime error.

t_value
_v(t_binding b)

If _length (b) = 1, returns the value part of the (name, value) pair that consti
tutes b. Otherwise, the evaluation halts with a runtime error.
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t_bool
_defined(t_binding b, t_text name)

If name is empty, the evaluation halts with a runtime error. Otherwise, the function
returns true if the binding b contains a pair (n, v) with n identical to name, andfalse
otherwise.

t_value
_lookup(t_binding b, t_text name)

If name is nonempty and is defined in b, returns the value associated with it; other
wise, the evaluation halts with a runtime error.

t_binding
_append(t_binding bi, t_binding b2)

Returns a binding formed by appending b2 to bl, but only if all the names in bl and
b2 are distinct. Otherwise, the evaluation halts with a runtime error.

t_binding
operator+(t_binding bi, t_binding b2)
{

val r = emptybindingi
for (i ! (bi == emptybinding)i bi

val n = _n(_head(bi))i
val Vi

if (_defined(b2, n) == true)
v = _lookup(b2, n)i

else v = _v(_head(bi))i
r = _append(r, _bindi(n, V))i

}

for (i ! (b2 == emptybinding)i b2 = _tail(b2))
if (_defined(bl, _n(_head(b2)) == false)

r = _append(r, _head(b2))i

return ri

}

Returns a binding formed by appending b2 to bl, giving precedence to b2 when both
bl and b2 contain (name, value) pairswith the same name.

t_binding
operator++(t_binding bi, t_binding b2) =

{

val r = emptybindingi
for (i ! (bi == emptybinding)i bi _tail(bi)) {

val n = _n(_head(bi))i
val Vi

if (_defined(b2, n) == true) {
val v2 = _lookup (b2, n)i

if (_is_binding (v2) == true)
v = _v(_head(bl);
if (_is_binding (v) == true)
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v = operator++(v, v2);
else v = v2;

}

else v v2;
}

else v = _v(_head(bi));
r = _append(r, _bindi(n, v));

}

for (; ! (b2 == emptybinding); b2
if (_defined(r, _n(_head(b2))

r = _append(r, _head(b2));

return r;

_tail(b2))
false)

}

Similar to operator», but performs the operation recursively for each name n that is
associated with a binding value in both bl and b2.

t_binding
operator-(t_binding bi, t_binding b2)
{

val r = emptybinding;
for (; ! (bi = ernptybinding); bi

val n = _n(_head(bi));
if (_defined(b2, n) == false)

r = _append(r, _head(bi));

return ri

_tail(bi)) {

}

Returns a binding formed by removing from bl any pair (n, v) such that the name n
is defined in b2. The value v associated with n in b2 is irrelevant.

t_binding
_sub(t_binding b, t_int start
{

0, t_int len _length(b))

int w _length(b);
int i _min (_max (start, 0)), w);
int j _min(i + _max (len, 0), w);
110 <= i <= j <= _length(b); extract [i . . j)
t_binding r = emptybinding;
for (; i < j; i++) r = _append(r, _elem(b, i));
return r;

}

Returns the sub-binding of b of length len starting at element start. Note the boundary
cases defined by the pseudo-code; _sub produces a runtime error only if it is passed
arguments of the wrong type.



A.3 Semantics 237

t_binding
_map(t_closure f, t_binding b) =
{

t_binding res = emptybinding;
for (; ! (b == emptybinding); b _tail(l)) {

II apply the closure IIfll
t_binding bI = f(_n(_head(b)), _v(_head(b)));
res = _append (res, bI);

return res;
}

Returns the binding that results from applying the closure f to each (name, value)
pair of the binding b, and appending the resulting bindings together. The closure f
should take the name (of type t.text) and value (of type t.value) as arguments, and
return a value of type t.binding, If f has the wrong signature, the evaluation halts
with a runtime error.

t_binding
-par_map(t_closure f, t_binding b)

Formally equivalent to _map, but the implementation may perform each application
off in a separate parallel thread. External tools invoked by _run_tool in different
threads may be run simultaneously on different machines. If a runtime error occurs
in one thread, the other threads may still run to completion before the evaluation
terminates.

A.3.4.6 Special Purpose Functions

t_closure _self

Unless redefined, the name _self always refers to the model in which it textu
ally occurs. In effect, every model imports itself under this name, prior to the first
import clause that appears explicitly in the SDL program text.

t_text
_model_name(t_closure m)

The value m must be a model; that is, a closure defined by importing an immutable
file from the Vesta repository. _model_name returns a text value that gives one
name for m within the repository. If a model with identical contents in an identi
cal directory has multiple pathnames in the repository, the name returned by this
primitive may be any of these pathnames, not necessarily the one that was actually
imported in the current evaluation.

t_text
_fingerprint(t_value v)

The _ finge rpr int primitive returns a text representation of the given value's fin
gerprint, a 128-bit internal identifier for the value. Fingerprints are chosen so that
with very high probability, two different values will always have different finger
prints. A given value may have different fingerprints in different evaluations or when
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computed at different points in the same evaluation, but the implementation tries to
avoid this when practical.

Specifically, a source with a particular absolute name in the Vesta repository
always has the same fingerprint, while two sources with different names but with
the same value will have the same fingerprint if they were fingerprinted by content
when inserted into the repository. See the documentation of the vadvance program
for details on when sources are fingerprinted by name and when by content. A de
rived value returned by any Vesta primitive other than _run_too1 has a fingerprint
that depends deterministically on the fingerprints of its arguments. Derived values
returned by _run_tool have either arbitrary unique fingerprints or deterministic
content-based fingerprints; see Section A.3.4.8 for details.

These properties make fingerprints useful as version stamps for Vesta evalu
ations, sometimes more useful than _model_name. If ml, m2 are models with
identical contents that reside in identical directories, then _fingerprint (ml)
= _fingerprint (m2) will often be true even when _model_name (ml) ! =
_mode I_name (m2) .

A.3.4.7 Type Manipulation Functions

t_text
_type_of(t_value v)

Returns a text value corresponding to the type of the value v as shown in Table A.9.

t_bool
_same_type(t_value vl, t_value v2) =

operator==(_type_of(vl), _type_of(v2))

t_bool
_is_bool(t_value v)

Returns true if v is of type t.bool; returns false otherwise.

t_bool
_is_int(t_value v)

Returns true if v is of type t-int; returns false otherwise.

Value
true, false
integer
byte sequence
err
list
binding
closures

Text returned by _type_of
"t.bool"
"t.int"
"t.text"
"t.err"
"tJist"
"t.binding"
"t.closure"

Table A.9. Text values returned by the _type_of primitive for each possible input value.
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t_bool
_is_text(t_value v)

Returns true if v is of type t.text; returns false otherwise.

t_bool
_is_err(t_value v)

Returns true if v is of type t.err; returns false otherwise.

t_bool
_is_list(t_value v)

Returns true if v is of type t.list; returns false otherwise.

t_bool
_is_binding(t_value v)

Returns true if v is of type t.binding; returns false otherwise.

t_bool
_is_closure(t_value v)

Returns true if v is of type t.closure; returns false otherwise.

A.3.4.8 Tool Invocation Function

t_binding
_run_tool (

t_text platform,
t_list command,
t_text stdin = II II,

t_text stdout_treatment
t_text stderr_treatment
t_text status_treatment
t_text signal_treatment
t_int fp_content = -2,
t_text wd = 11 .WD II

,

t_bool existing_writable = FALSE)

The _run_tool primitive is the mechanism by which external programs like com
pilers and linkers are executed from an SDL program. It provides functionality that is
fairly platform-independent. The following description, however, is somewhat Unix
specific (for example, in its description of exit codes and signals).

The platform argument specifies the platform on which the tool is to be executed.
_run_tool selects a specific machine for the given platform. Th~ legal values
for platform and the mechanism by which a machine of the appropriate platform is
chosen are implementation dependent.

The tool to be executed is specified by the command argument. This argument
is a tJist of t.text values. The first member of the list is the name of the tool (in
terpretation of the name is discussed below); the remaining members of the list are
the arguments passed to the tool as its command line. The tool is executed on the
specified platform in an environment with the following characteristics:
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•

•

•
•

•

The file system is encapsulated so that absolute paths (i.e., those beginning
with a Delim) are interpreted relative to . / root, where '.' is the implicit fi
nal parameter to _run_tool. Non-absolute paths are interpreted relative to
. / roo t / $wd, where wd is a parameter to _run_too1. The interpretation of
file names is discussed in more detail below.
The environment variables are taken from. / envVars, where'.' is the implicit
final parameter to _run_tool.
The content of standard input is the value of the stdin _run_tool parameter.
Treatment of standard output and standard error is specified by the stdout.ireat
ment and stderr.ireatment parameters. These parameters may be one of the
t.text values "ignore", "report II, II report_nocache II, "value II, or
"report_value II. If the treatment is II ignore II, any bytes written to the
corresponding output stream (stdout or stderr) are discarded. If the treatment is

II report II , the corresponding output is made visible to the user. If the treatment
is II report_nocache II, the corresponding output is made visible to the user
and, if it is not empty, the evaluator does not cache the result of the _run_tool
call. If the treatment is II value II , the output stream is converted to a Vesta value
of type t.text and returned as part of the _run_tool result, as described below.
If the treatment is II report_value II , the output stream is both made visible
to the user and returned as part of the result.
The status.treatment and signal.treatment arguments may take on the t.text value

II report II or II report_nocache II. Regardless of their values, the code
and signa1 fields of the result value will be set as described below. If the
value of status.treatment is II report_nocache" , this _run_tool call will
not be cached if the result code is nonzero; similarly, if signal.treatment is
"report_nocache", the _run_tool call will not be cached if the result
signal is nonzero. Additionally, in the present implementation, a runtool call
that is not cached because of its return code or signal is considered a runtime
error and halts the evaluation with an error message, unless the -k ("keep going")
flag is given on the evaluator command line.
The fp.content argument controls how fingerprints are assigned to any derived
files created by the tool execution, including derived files created for stdout or
stderr when the value of the stdout.ireatment or stderr.ireatment parameter is
"value". A value of -1 causes the fingerprints of all such derived files to be com
puted deterministically from their contents. A non-negative fp.content value of
x causes only those files less than x bytes in length to have their fingerprints
computed from the file contents; an arbitrary unique fingerprint is chosen for
files at least x bytes in length. Hence, a value of 0 causes all derived files to be
assigned arbitrary fingerprints. Setting fp.content to -2 selects a site-dependent
default value (set by the [Evaluator]/FpContent configuration variable, in our im
plementation). The SDL values true andfalse are accepted as synonyms for -1
and 0, respectively.

The cost of fingerprinting a file's contents is non-trivial (approximately 1
second per megabyte on the prototype implementation), but doing so allows for
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cache hits in cases where two evaluations depend on a value that is identical, but
was computed in two different ways.

• The existing.writable argument controls whether the tool is permitted to write
to files that already exist in its encapsulated file system when it is started. If
the argument is true, such files may be opened for writing and written to; if it is
false, they may not. The value false gives better file system performance on some
implementations and should be used unless the tool being invoked requires the
ability to write files named in the encapsulated file system.

The _run_tool primitive returns a binding that contains the results of thecom
mand execution. This binding has type:

type run_taal_result = binding
code : int,
signal : int,
stdaut_written baal,
stderr_written baal,
stdaut text,
stderr text,
raat binding

If r is of type run_tool_resul t, then:

• r / code is an integer value that characterizes how the command terminated (Le.,
the exit status of the Unix process).

• r / signa1 is an integer value identifying the Unix signal that terminated the
process, or 0 if the process exited voluntarily.

• r/stdout_written and r/stderr_written indicate whether data was
written to the stdout and stderr streams, respectively.

• r / s tdou t is defined if and only if the stdout.treatment _run_too1 parameter
is II value II or II report_value II , in which case it contains the bytes written
to stdout.

• r / s tderr is defined if and only if the stderr.ireatment _run_tool parameter
is II value II or II report_value II , in which case it contains the bytes written
to stderr.

• r/root is a binding containing all files created by the command that are ex
tant upon exit. See the description under "File System Encapsulation" below for
details.

Fine points relating to the results of _run_tool:

• If the tool cannot be invoked - for example, because of errors in the parame
ters to _run_tool - the evaluator always prints a diagnostic and halts with
a runtime error. However, errors that occur during the execution of the tool are
reported in a tool-specific fashion, as discussed under status.treatment and sig
nal.ireatment above.
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• If report_nocache is specified as the treatment for an output stream (std
out or stderr) or the exit or signal status, the evaluator will not make a cache
entry for the _run_tool call if any output is produced on the corresponding
output stream or if the exit or signal status is nonzero, respectively. In addition,
none of the ancestor functions of the failing _run_tool call in the call graph
are cached. Since no cache entries are made, a subsequent re-evaluation of the
model will produce the same output (on stdout or stderr). This can be useful
for reproducing error messages from a compiler or other external tool that are
displayed through the Vesta user interface.

File System Encapsulation:

• When the command process (or any subprocess it creates) executes a Unix sys
tem call that includes a file path as a parameter, the file path is translated into a
reference into the'.' binding that is the last parameter to _run_too1.

• The path is interpreted relative to . / roo t if it is absolute (i.e., if it begins with
" / "), and relative to . / roo t / $wd otherwise, where $wd is the value of the wd
parameter to _run_tool. Each component of the path - except possibly the
final one - must name a Vesta binding. The interpretation of the final component
of the path depends on the semantics of the system call. If the system call expects
an extant file, the final component must name a Vesta value of type t.text, If the
system call expects an extant directory, the Vesta value must be of type t.binding.
If the system.call expects an unbound name, the name must not be bound by the
binding corresponding to the penultimate path component.
The command name itself is first looked up according to the, rule just given 
that is, relative to . /root if it begins with "I" or relative to . /root/ $wd oth
erwise. If this lookup fails, a PATH environment variable exists in . / envVars,
and the command name does not contain a "!", then the value of PATH is in
terpreted as a colon-separated list of directory names and the command name is
looked for in each of them until it is found or the list is exhausted.

• A file created or modified by the command process (or a subprocess) remains
visible in the name space throughout the remainder of the process's. execution
(or until deleted), just as in a regular file system. This is achieved by modeling
file creation, modification, and deletion as a suitable overlaying of . / root. For
example, if the process creates "foo.o" in its working directory, this has the effect
of:

./root/$wd +~ [ foo.o ~ <bytes of file> ];
<subsequent execution of the command process>

• File modification is handled in exactly the same way. For example, if the process
opens the existing file "foo.db" in its working directory and writes to it, this has
the effect of:

./root/$wd +~ [ foo.db ~ <new contents of file> ];
<subsequent execution of the command process>

Note that modification of preexisting files is forbidden if the existing .writable
argument to _run_tool is set tofalse (the default).
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• File deletions are modeled similarly, but the files are removed from the context
using the binding difference (-) operator, instead of added using the binding over
lay (+) operator.

• When the command process exits, the accumulated effects of the file creations
and deletions it has performed are returned as part of the _run_tool result (in
r / root). In this binding, the names of files that existed in . / root before the
tool was invoked but were deleted by the tool are bound tofalse.

Thus, if . / roo t represents the state. of the file system visible to the com
mand process at the time it is launched, then the state of the file system when it
exits can be described as:

./root ++ r/root

So, if the invoker of _run_tool wanted to update . /root to reflect the
changes made by calling _run_tool, the code might look like this:

r = _run_tool ( <suitable parameters> )j

new_fs = ./root ++ r/rootj
• += [ root = new_fs ]j

After the last assignment, names in . / roo tbound to false are files that were
deleted by the tool. Here is a recursive function for removing such files:

/**nocache**/
remove_deleted(b: binding): binding
{

res: binding = []j

foreach [ n = v ] in b do
res += if v = false then [] else

if _is_binding (v)
then [$n remove_deleted (v)
else [ $n = v ];

return res;
} j

A.3.4.9 Diagnostic Functions

t_value
-print(t_value v, t_int deps = 0, t_bool verbose = FALSE)

Print the value v to standard output followed by a newline, and return v. What gets
printed depends on v's type. If v is of type t.err, ERR is printed. If v is of type t.bool,
TRUE or FALSE is printed. If v is of type tint, its decimal value is printed.

The printed representation of a t.text value is < f i 1e 0xXXXXXXXX> if verbose
is false and the text is represented by a backing file, in which case XXXXXXXX is the
file's hexadecimal identifier. Otherwise, it is the text value's contents enclosed in
double quotes.

The printed representation of a tJist value containing the values VI, V2, ... , Vk is
< PI, P2, ... ,Pk >, where Pi denotes the printed representation of the value Vi.
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The printed representation of a t.binding value containing the (name, value) pairs
(nl' VI),(n2,V2), .. . , (nk'Vk) is [ nl == PI,· .. ,nk == Pk ], where again Pi denotes the
printed representation of the value Vi.

The printed representation of a t.closure value is <Model name> if the closure
is represented by a model, in which case name is a name for the model file in the
repository. Otherwise, if verbose is true, it is the complete list of formals, body, and
context; if not it is simply <Closure>.

If deps is greater than zero, the value's dependencies are also printed. In the
current implementation, values of 1 and 2 provide different levels of detail. This
feature is meant for debugging the evaluator itself.

Typically, -print is used for debugging purposes, and its result is ignored. A
call of the -pr i n t function is never cached, but it does not prevent caching of a call
to the function that calls it.

t_bool
_assert(t_bool cond, t_value msg}

If the value cond is true, return true. Otherwise, print the value msg as with the
-print primitive, then terminate the evaluation with a runtime error. Command
line options to the evaluator permit the context of a false assertion and/or a stack
trace to be printed as well.

A.4 Concrete Syntax

A.4.1 Grammar

Models:

Model

Files Clauses:

Files
FileClause
FileItem
FileSpec
FileBinding

Import Clauses:

Files Imports Block

FileClause*
files FileItem*i
FileSpec I FileBinding
[ Arc = ] DelimPath
Arc = '[' FileSpec*, ']'

Imports · .- ImpClause*
ImpClause · .- ImpIdReq I ImpIdOpt
ImpIdReq · .- import IrnpItemR*i
ImpItemR · .- ImpSpecR I ImpListR
ImpSpecR · .- Arc DelimPath
ImpListR · .- Arc = '[ , ImpSpecR* , '] ,



ImpIdOpt
ImpItemO
ImpSpecO
ImpListO

Pathsand Arcs:

DelimPath
Path
Arc
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from DelimPath import ImpItemO*i
ImpSpecO I ImpListO
[ Arc = ] Path [ Delim ]
Arc = 1 [' ImpSpecO*, ']'

[ Delim ] Path [ Delim
Arc { Delim Arc }*
Id I Integer I Text

Blocks and Statements:

Block
Stmt
Result

I {' { Stmt i } * ResuIti' } ,

Assign I Iterate I FuncDef I TypeDef
{ value I return } Expr

Assignment Statements:

Assign · .- TypedId [ Op ] Expr
Op · .- AddOp I MulOp
AddOp · .- + I ++ I
MulOp · .- *

Iteration Statements:

Iterate
Control
IterBody

foreach Control in Expr do IterBody
TypedId I 1 [' TypedId TypedId ']'
Stmt I '{' Stmt+; '}'

Function Definitions:

Expr }* 1

TypedId }* { , TypedId

FuncDef
Formals
FormalArgs

Id Formals+ [ TypeQual ] Block
( FormalArgs )
TypedId* ,
{ TypedId
TypedId { Expr }+

Expressions:

Expr · .- if Expr then Expr else Expr I Exprl
Exprl · .- Expr2 { => Expr2 }*
Expr2 · .- Expr3 { II Expr3 }*
Expr3 · .- Expr4 { && Expr4 }*
Expr4 · .- Expr5 [ CompareOp Expr5 ]

CompareOp · .- -- I ! = I < I > I <= I >=
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Expr5 · .- Expr6 { AddOp Expr6 }*
Expr6 · .- Expr7 { MulOp Expr7 }*
Expr7 · .- [ UnaryOp ] Expr8
UnaryOp · .- - I

Expr8 · .- Primary [ TypeQual ]

Primary · .- ( Expr ) I Literal I Id I List
Binding I Select I Block I FuncCall

Binary operators withequal precedence are left-associative.

Literals:

Literal

Lists:

List

Bindings:

ERR I TRUE I FALSE I Text I Integer

< Expr*, >

Binding
BindElem
SelfNameB
NameBind
GenPath
GenArc

BindingSelections:

'[' BindElem*, ']'
SelfNameB I NameBind
Id
GenPath = Expr
GenArc { Delim GenArc
Arc I $ Id I $ ( Expr

}* [ Delim
) I % Expr %

Select
Selector

FunctionCalls:

FuncCall
Actuals

TypeDefinitions:

Primary Selector GenArc
Delim I

Primary Actuals
( Expr*, )

TypeDef · .- type Id = Type
TypedId · .- Id [ TypeQual ]

TypeQual · .- : Type
Type · .- any I bool I int I text

list [ ( Type ) ]

binding ( TypeQual )

binding [ ( TypedId* , ) ]

function { ( TypedForm* , }* [ TypeQual ]

Id
TypedForm · .- [ Id : ] Type
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A.4.2 Ambiguity Resolution

The grammar as given above is ambiguous. The ambiguity is resolved as follows.
The Vesta parser accepts a modified grammar in which the > token is replaced

by two distinct tokens: GREATER in the production for Expr4 and RANGLE in the
production for List. The modified grammar is unambiguous and can easily be parsed
by an LL(l) or LALR(l) automaton.

The Vesta tokenizer is responsible for disambiguating between GREATER and
RANGLE wherever> appears in the input. It does so by looking ahead to the next
token after the >. If the next token is one of

- ! ( ERR TRUE FALSE Text Integer Id < [ {

then the> is taken as GREATER; otherwise, it is taken as RANGLE.
Why is this solution reasonable? Inspection of the grammar shows that in a syn

tactically valid program, the next token after GREATER must be one of those in the
list above. The next token after RANGLE must be one of the following:

* + ++ != < GREATER <= >= && I I =>

; do , ) then else RANGLE ] % / \ ! (

These sets overlap in the tokens -, !, (, and <. Given the choice to resolve these
cases as GREATER, it is impossible to write certain syntactically valid programs
containing RANGLE. However, any such program can be rewritten by replacing
every List nonterminal by ( List ), yielding a semantically equivalent program in
which the closing > of the List is correctly resolved as RANGLE. Moreover, any
program in which RANGLE is followed by -, !, (, or < must have a runtime type
error, due to the paucity of operators defined on the list type, so in practice such
programs are never written.

A.4.3 Tokens

Table A.IO gives a BNF description of the tokens of the language. The token classes
Delim, Integer, Id, and Text, and the individual tokens in the classes Punc, TwoPunc,
and Keyword, serve as terminals in the BNF of earlier sections.

Newline is defined as an ASCII new line sequence, either CR, LF, or CRLF.
NonNewlineChar is any ASCII character other than CR and LF. CommentBody is
any sequence of ASCII characters that does not contain '*1'. Tab is the ASCII TAB
character.

The ambiguities in the token grammar are resolved as follows. The tokenizer
interprets the program as a TokenSeq. It scans from left to right, repeatedly matching
the longest possible Token beginning with the next unmatched character. The tokens
Whitespace and Comment are discarded after matching; other tokens are passed on
for parsing by the main grammar. When a string of characters matches both Integer
and Id, it is tokenized as Integer. When a string matches both Keyword and Id, it is
tokenized as Keyword.
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TokenSeq
Token

Token*
Integer
Keyword

Id I Text I Punc I TwoPunc
Whitespace I Comment

Delim · .- / \

Integer · .- DecimalNZ Decimal*
0 Octal* I 0 { x I X } Hex+

Decimal · .- 0 I 1 I 2 I 3 I 4 I 5 6 7 8 I 9
DecimalNZ · .- 1 I 2 I 3 j 4 I 5 I 6 7 8 9
Octal · .- 0 I 1 I 2 I 3 I 4 I 5 6 7
Hex · .- Decimal

I A I B I C I D I E F

I a I b I c 1 d I e f

}+

H I I J K

S I T U V

h I i I j k
s I t I u v

Id
Letter

IdPunc

.. - { Letter I Decimal I IdPunc

.. - A I B I C I DIE I FIG I
LIM I N I 0 I P I Q I R I
W I X I Y I Z

a I b I c I die f g I

1 I min I 0 I P q r I

w I x I y I z
•• -. I

Text
TextChar
Punc

Escape
EscapeChar

Octals
Hexes

II TextChar* II

Decimal I Letter I Punc
- I 'I I@I#I$

(I ) I 1 - I + I

']' I ; I 'I' I '
? I / I Space
\ EscapeChar
nit I v I b r I f
Octals I Hexes
Octal [ Octal [ Octal
{ x I X } Hex [ Hex ]

I Escape
% t " I & I *
, { , , I ' I '}'

, I < I • I >

a I \ I II

TwoPunc ++ I == != I <= I >= I => I I I &&

Keyword

Whitespace

Comment

any I binding I bool I do I else ERR
FALSE I files I foreach I from I function
if I import I in I int I list I return
text I then I TRUE I type I value

, , I Tab ~ Newline

/1 NonNewlineChar* Newline
'/*' CommentBody '*/'

Table A.tO. BNFforthetokens of SDL.
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A.4.4 Reserved Identifiers

Here are SDL's reserved identifiers; they should notberedefined:

_append _assert _bindl _defined _div _elem _find findr
_fingerprint _head _is_binding _is_bool _is_closure
_is_err _is_int _is_list _is_text _length _listl _lookup
_map _max _min _mod _model_name _n -par_map -print
_run_tool _same_type _self _sub _tail _type_of _v



B

The Vesta Web Site

The Vesta system has a website, http://www . ves tasys . org, that contains a
number of additional resources for readers who seek more information about Vesta.
The home page has links to publications, reference documents, and user documenta
tion (in Unix jargon, "man" pages).

The code of the Vesta system is licensed under the LPGL and is available via
the download link on the home page. The committed reader who wants to install
and run Vesta should first follow the link "Getting Started with Vesta" on the home
page, as the installation is not automatic (as with any server-based system) and this
link provides quite a bit of helpful documentation. But for the more casual reader
who simply wants to browse the code, there is a link on the home page entitled "A
web interface to the Vesta repository". This link provides easy access to the code of
Vesta (in C/C++) and to the SDL code for Vesta's bridges and standard environment
models. These latter packages are particularly recommended to those who want to
understand the full power and flexibility afforded by SDL to designers of complex,
large-scale development environments.
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The letter "n" following a pagenumberdenotes a reference to a footnote.
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control of
realm 55
special principals 56

administrator see Vesta administrator
advance operation 41
agreement of repositories 46, 110

invariant 46,47,105-108
primitives preserving 108-110

Alpha (DEC) 76,99, 172, 188, 189
application model see system model
Arafiagroup 198-199
attributes- see metadata

backstop see environment, backstop
base

in directory representation see directory,
base pointer

binding 61, 63-65
as file system tree 63, 65, 66
overlay operators 64-65

branch 39-42
bridge 66, 139, see also system model

C++ 77
build tools 10,21,26, 53n, 113n, 197
builder see evaluator
building 5,24-27

complete descriptions 29

consistent 8-10,29
customization of 84-87
incremental 8, 10,29, 174-176
repeatable 8, 29
scalable 29-30, 198
scratch 8,141,174-176

C 18-19,200
cache see function cache
call graph see function call graph
CFP see fingerprint, common
change set 169
check-in 9,24,41, see also vcheckin
check-out 9,24,40-41,50, see also

vcheckout
checkpoint

in function cache implementation 134
in repository implementation 99-100

chroot system call see Unix
ClearCASE 167-168

ClearMake tool 167
dependency analysis in 123n
relationship to DSEE 167
replication in 167-168

closure 61,67-68, 133-134
use of 68-69

command line see Unix
common names see function cache,

common names in
compiler 97, 199
concurrency control see source control



258 Index

configurationmanagement 8-9
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configuration thread see DSEE
control panel model see system model
Conway's Law 84
copy-on-write 40n, 103-104
CVS 162-163, 168,200

DEC (Digital Equipment Corp.) 13,76,
198

deleting files see sources, deletion;
weeding

dependencies 26, 120-132
as predicates 114, 120-121, 127
dynamic 25,114-116
fine-grained 26, 113-114
for SDL function invocation 123-131
for system model invocation 131-132
for _run_tool invocation 121-123
primary see function cache, keys
representation as paths 120-122,

126-127
rules for calculating 122, 127-129
secondary see function cache, keys
types of 122, 126-127
use of fingerprints in see function cache,

fingerprints used in
dependency analysis 10,29, 113n,

115-116
correctness theorem 125-126, 130-131
example 129-130
granularity 113-114, 120, 121n, 124
in ClearMake 167
in Nmake 165
overview 25-26
with Makedepend 163

derived files 27, 94
defined 8, 93
deletion (weeding) of 94,155-156
managed automatically 147, 166
naming of 93-94

deriveds see derived files
description language see SDL
development cycle 40-46, 50

inner loop of 41-44
outer loop of 40-42, 44
session 40-42

directory see also Unix
appendable 24n,36,106

base pointer 95,96,98-99, 103, 105
change list 98-99, 103-105
evaluator 94-96
immutable 22, 36, 106
implementation 98-100, 181, 185
mastership see replication
mutable 22,41,45-46
session see developmentcycle
volatile 95-96
working see package, working copy of

DSEE 165-166
configuration thread in 166, 166n
system model in 166

encapsulation see environment, encapsu
lated

environment 76
backstop 139-141
encapsulated 26, 66, 95-96
for tool execution 65-66, 121
in system models 61-62
standard construction 28-29, 73, 74, 82,

139-142,251
environment variables see Unix
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and caching see function cache
behavior on error 132-134
interaction with repository 36-37,41,

53, see also directory, evaluator
interaction with weeding 152
overview 21-22,24-27
performance see performance

evaluator directory see directory, evaluator

false miss see function cache
file handle

NFS 101-102
files see also derived files; sources

as text values 63, 63n
exporting build 27
fingerprints for 97-98
immutable see sources, immutability
mutable see directory,mutable; working

directory
name space for tools see environment

for tool execution
naming of 9

files clause 77, 131
fingerprint 96-98
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and evaluationerrors 132-134
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connnon names in 135-136
concurrency in 135,139
contents of entry in 117
entry storage 138-139
examples of behavior 139-144
fault tolerance in 134
fingerprints used in 116-117, 131-132
hit in 25,26,98, 119, 132, 137
implementation 134-139
interaction with weeding 152-155
keys 116-119,124-125
lookup algorithm 135-138
lookup protocol 119-120
missin 113-114,119,132,137
overview 24-26,113-114
performance of see performance
persistent 26, 134
requirements 134-135
role in incremental building 25
server 149-150
shared 27, 29
special model entry 131-132
uncommon names in 136

function call graph 121, 132, 133, 149-151
example 140, 143, 145

garbage collection 192n,see also weeding
in directory implementation 99

ghost 37,106n
master 106
non-master 106

graph log see weeding

header files 19,25, 79
hit see function cache, hit in

innnortality see sources, immortality
innnutability see sources, immutability
import clause 45, 53, 68-69, 72, 76, 131
integrateddevelopmentenvironment 169

Index 259

Intel 198

Java 199

leaf function 78
leases

in shortid implementation 100
in weeder implementation see weeding,

use of leases
library

leaf 74, 77-78
pre-built 74, 79
umbrella 74-75, 78-79, 142

linker 73, 199
Linux 13n
list

SDL data type 60, 78
logging

in directory implementation 99-100
longid 101-103, 183

pathname-based 102-103
shortid-based 102-103

Make 163-165,168, see also performance,
comparison with Make

deficiencies 20, 163-165
dependencyrules 20, 163-164
overview 20
performance of 164

Makedepend 123n, 163, 174, 175
Makefile 20, 123n, 163, 164
mastership see replication
metadata see also replication

and evaluator 53
and replication 57
as histories 110-111
on repository objects 52-57
use in developmentcycle 52-53

miss see function cache, miss in
model see system model
modeling language see SDL
MultiPKFile 138

name space see sources, name space
~S 24, 36n, 102, 104-105, 172, 181

interface see repository
protocol 14,23, 46
server 101, 104, 181-183

Nmake 165
non-master see replication
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build-wide 84-85
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package 85-86

package 37-38
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naming of 38-40
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unit of versioning 23,37-38
workingcopy of 40-44

performance
comparisonwith Make 172-175
CPU usage 178-179,190-191
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hardwareconfiguration 172
memory usage 179-180,184-185, 192
of caching 132,177-178,190-193
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of file operations 181-183
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of repository 180-189
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ofRPC 194-195
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scalingprojections 185-186, 192-193
summary 172-173

PKFile 135-139,191,193
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RCS 162,168,186n,200
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Reilly,Matt 199n
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example 48-49
implementationof 105-111

mastership 47-48,105-106
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replicator 49-50,57
controlling 49-50
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directory see directory
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NFS interface 53,55, 104-105, 180
overview 21, 35
performanceof see performance
RPC interface 46,53, 105
server 21,35,36,38,44,52
transactionsused in 52n, 109
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individualtool name

reservation see stub, master
root directory see Unix
runtool 66,121, 167n,178

errors from call of 132-133
languageprimitive 66, 94-96, 103
server 21,96, 198,see also environ-

ment, for tool execution
tool invocation by 26

scaling see building, scalable; perfor-
mance, scalingprojections

sees 162
Schalk, Ken 199n
SCM 5-6, 8-9, 169

scenarios 6-7
SDL 24,59, 94

data types 61
environmentparameter 62-63,66, 131
functionallanguage 60-61
key properties 60
overview 60-62
referencemanual 203-249
requirements 59-60

secondarykey see functioncache, keys
session see development cycle
shippingfiles see files, exportingbuild
shortid 93-94,122,150,155

and file storage 100-101
site 21



snapshot see vadvance
software configuration management see

SCM
source control 24, 40, 41

check-in see check-in
check-out see check-out
defined 9

source directory see directory
source files see sources
sources 94

binary files as 23n, 72, 74, 79, 141
browsing 21, 23, 36
defined 22
deletion 36
immortality 36
immutability 36
name space 23,36-37
organized as packages 23-24
versions of see versions

SRPC 105, 194-195
standard environment see environment,

standard construction
stub 37,53

master 47, 106
non-master 47, 106, 106n

symbolic link see Unix
system description language see SDL
system model 9-10,28

and caching 131-132
and file names 38
as closure 67
bridge 76-77, 251
control panel model 81-84
defined 9
evaluation of 10
for application package 79
for library package 77-79
for release 29, 80-81
hierarchy 74-84
in DSEE 166
modularity of 28, 61
parameterization in 62-63,77,81,84
template 61, 73, 82-84

system modeling language see SDL

temporary build directories 26
text

files as 63, 63n
SDL data type 60

Index 261

tool
build see build tools; vesta command
encapsulation see environment,

encapsulated
executionenvironment see environment,

for tool execution
repository see repository tools

Tru64 13

umbrella function 78
uncommon names see function cache,

uncommon names in
Unix 13,76,96,105

access control 16,55
chroot system call 96
command line 17,66
devices 95n
directories 14,23
environment variables 18,61,66, 121n
file

descriptor 17
metadata 15-16
mode bits 16
names 14
permissions 16

group 16,55
hard link 15,46n
mount point 14,46
pipeline 18
process 16-17
root directory 17
root user 16
search path 19,65
shell 17-18
shell script 18
symbolic link 15,46n, 53
user 16,55
working directory 17

vadvance 41,43,45,52,98,105,181,186,
187

vattrib 53
vbranch 41, 52
VCacheStats 193
vcheckin 41,50,52, 181, 187
vcheckout 40-42,45,49-50,103, 105,

181,186,187
vcreate 45,52,186
version control see version management



262 Index

version management 5,9,44-45, 168
CVS-style 162-163

versions 37-38
and file system 38
merging 45, 162

Vesta
administrator 47,55-56, 148, 149n
architecture 21-30
components 21-29
conversionto 200
design target 30
documentation 200, 251
evaluator see evaluator
function cache server see function cache
key properties 5,9,29-30, 197
obstacles to adoption 199-200
performance see performance
repository tools see repository tools
runtool server see runtool server
source code 199,251
use at Intel 198-199
Vesta-l prototype 30n
web site 199,251

vesta command 40, 43
Vesta-l 30

Vesta-2 30
vhistory 45
vimports 45
vlatest 45, 52
volatile directory see directory,volatile
vrepl 49, 189
vsessions 45
vupdate 45,53,72
vwhohas 45, 52

weeding 22,94,139, 147-156, 184
administrationof 147-148
algorithm 149-156
concurrencyin 28,152-156
contrast with garbage collection 147
correctness of 154-155
graph log 149-151,194
input 148
invariants 153-154
overview 27-28
performanceof see performance
roots for 28, 148-149
use of leases 152-153

working directory 41-43, see also Unix


	Title Page
	Copyright Page
	Preface
	Audience and Scope
	Acknowledgements
	Table of Contents

	Part I Introducing Vesta
	1 Introduction
	1.1 Some Scenarios
	1.2 The Configuration Management Challenge
	1.3 The Vesta Response

	2 Essential Background
	2.1 The Unix File System
	2.1.1 Naming Files and Directories
	2.1.2 Mount Points
	2.1.3 Links
	2.1.4 Properties of Files

	2.2 Unix Processes
	2.3 TheUnixShell
	2.4 The Unix Programming Environment
	2.5 Make

	3 The Architecture of Vesta
	3.1 System Components
	3.1.1 Source Management Components
	3.1.2 Build Components
	3.1.3 Storage Components
	3.1.4 Models and Modularity

	3.2 Vesta's Core Properties
	In Summary


	Part II The User's View of Vesta
	4 Managing Sources and Versions
	4.1 Names and Versions
	4.1.1 The Source Name Space
	4.1.2 Versioning
	4.1.3 Naming Files and Packages

	4.2 The Development Cycle
	4.2.1 The Outer Loop
	4.2.2 The Inner Loop
	4.2.3 Detailed Operation of the Repository Tools
	4.2.4 Version Control Alternatives
	4.2.5 Additional Repository Tools
	4.2.6 Mutable Files and Directories

	4.3 Replication
	4.3.1 Global Name Space
	4.3.2 A Replication Example
	4.3.3 The Replicator
	4.3.4 Cross-Repository Check-out

	4.4 Repository Metadata
	4.4.1 Mutable Attributes
	4.4.2 Access Control
	4.4.3 Metadata and Replication
	In Summary



	5 System Description Language
	5.1 Motivation
	5.2 Language Highlights
	5.2.1 The Environment Parameter
	5.2.2 Bindings
	5.2.3 Tool Encapsulation
	5.2.4 Closures
	5.2.5 Imports
	In Summary



	6 Building Systems in Vesta
	6.1 The Organization of System Models
	6.2 Hierarchies of System Models
	6.2.1 Bridges and the Standard Environment
	6.2.2 Library Models
	6.2.3 Application Models
	6.2.4 Putting It All Together
	6.2.5 Control Panel Models

	6.3 Customizing the Build Process
	6.4 Handling Large Scale Software
	In Summary


	Part III Inside Vesta
	7 Inside the Repository
	7.1 Support for Evaluation and Caching
	7.1.1 Derived Files and Shortids
	7.1.2 Evaluator Directories and Volatile Directories
	7.1.3 Fingerprints

	7.2 Inside the Repository Implementation
	7.2.1 Directory Implementation
	7.2.2 Shortids and Files
	7.2.3 Longids
	7.2.4 Copy-on-Write
	7.2.5 NFS Interface
	7.2.6 RPC Interfaces

	7.3 Implementing Replication
	7.3.1 Mastership
	7.3.2 Agreement
	7.3.3 Agreement-Preserving Primitives
	7.3.4 Propagating Attributes
	In Summary



	8 Incremental Building
	8.1 Overview of Function Caching
	8.2 Caching and Dynamic Dependencies
	8.3 The Function Cache Interface
	8.4 Computing Fine-Grained Dependencies
	8.4.1 Representing Dependencies
	8.4.2 Caching External Tool Invocations
	8.4.3 Caching User-Defined Function Evaluations
	The Composition of Cache Keys
	The Interaction of Caching and Evaluation
	Dependency Types
	Dependency Calculation Rules
	Fine-Grained Analysis: An Example
	The Correctness Theorem

	8.4.4 Caching System Model Evaluations: A Special Case

	8.5 Error Handling
	8.6 Function Cache Implementation
	8.6.1 Cache Lookup
	8.6.2 Cache Entry Storage
	8.6.3 Synchronization

	8.7 Evaluation and Caching in Action
	8.7.1 Scratch Build of the Standard Environment
	8.7.2 Scratch Build of the Vesta Umbrella Library
	8.7.3 Scratch and Incremental Builds of the Evaluator
	In Summary



	9 Weeder
	9.1 How Deletion is Specified
	9.2 Implementation of the Weeder
	9.2.1 The Function Call Graph
	9.2.2 Concurrent Weeding
	In Summary



	Part IV Assessing Vesta
	10 Competing Systems
	10.1 Loosely Connected Configuration Management Tools
	10.1.1 RCS
	10.1.2 CVS
	10.1.3 Make

	10.2 Integrated Configuration Management Systems
	10.2.1 DSEE
	10.2.2 ClearCASE

	10.3 Other Systems

	11 Vesta System Performance
	11.1 Platform Configuration
	11.2 Overall System Performance
	11.2.1 Performance Comparison with Make
	11.2.2 Performance Breakdown
	11.2.3 Caching Analysis
	11.2.4 Resource Usage
	CPU Usage
	Client Process Memory Usage


	11.3 Repository Performance
	11.3.1 Speed of File Operations
	11.3.2 Disk and Memory Consumption
	Disk Space Usage
	Main Memory Usage
	Scaling Projections

	11.3.3 Speed of Repository Tools
	11.3.4 Speed of Cross-Repository Tools
	11.3.5 Speed of the Replieator

	11.4 Function Cache Performance
	11.4.1 Server Performance
	11.4.2 Measurements of the Stable Cache
	11.4.3 Disk and Memory Usage
	11.4.4 Function Cache Scalability

	11.5 Weeder Performance
	11.6 Interprocess Communication
	In Summary


	12 Conclusions
	12.1 Vesta in the Real World
	12.2 Vesta in the Future

	A SDL Reference Manual
	A.1 Introduction
	A.2 Lexical Conventions
	A.2.t Meta-notation
	A.2.2 Terminals

	A.3 Semantics
	A.3.1 Value Space
	A.3.2 Type Declarations
	A.3.3 Evaluation Rules
	A.3.3.1 Expr
	A.3.3.2 Literal
	A.3.3.3 Id
	A.3.3.4 List
	A.3.3.5 Binding
	A.3.3.6 Select
	A.3.3.7 Block
	A.3.3.8 Stmt
	A.3.3.9 Assign
	A.3.3.10 Iterate
	A.3.3.11 FuncDef
	A.3.3.12 FuncCall
	A.3.3.13 Model
	A.3.3.14 Files
	A.3.3.15 Imports
	A.3.3.16 File Name Interpretation
	A.3.3.17 Pragmas

	A.3.4 Primitives
	A.3.4.1 Functions on Type t.bool
	A.3.4.2 Functions on Type tint
	A.3.4.3 Functions on Type t.text
	A.3.4.4 Functions on Type tJist
	A.3.4.5 Functions on Type t.binding
	A.3.4.6 Special Purpose Functions
	A.3.4.7 Type Manipulation Functions
	A.3.4.8 Tool Invocation Function
	A.3.4.9 Diagnostic Functions


	A.4 Concrete Syntax
	A.4.1 Grammar
	A.4.2 Ambiguity Resolution
	A.4.3 Tokens
	A.4.4 Reserved Identifiers


	B The Vesta Web Site
	References
	Index



